Skip to content
Advertisement

How to find the regression line for multiple independent variables?

I’m trying to understand how the Multiple Line Regression works in code for machine learning. The issue I’m having is that I don’t get how to set up my regression line properly or if my coefficients are correct.

So I guess I can divide my thoughts into three questions.

  • Is my method of finding the coefficients for the regression line correct?
  • Is my method of setting up the regression line correct?
  • Is my method of plotting correct?

My code in Python 3.8.5:

from scipy import stats as stats
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

dataset = pd.read_csv("cars.csv")
df = dataset.fillna(dataset.mean().round(1))
x_cars = df[['Weight', 'Volume']]
y_cars = df['CO2']
x_cars_weight = x_cars.Weight
x_cars_volume = x_cars.Volume

# Best fitted line multiple variables
X = [x_cars_weight, x_cars_volume]
A = np.column_stack([np.ones(len(x_cars_volume))] + X)
Y = y_cars
coeffs_multi_reversed, _, _, _ = np.linalg.lstsq(A, Y, rcond=None)
coeffs_multi = coeffs_multi_reversed[::-1]

# Plot
from mpl_toolkits import mplot3d
fig = plt.figure()
ax = plt.axes(projection='3d')
z = y_cars
x = x_cars_weight
y = x_cars_volume
c = x + y
ax.scatter(x, y, z, c=c)
ax.set_title('$CO_2$ emission')

x1 = coeffs_multi[2]*np.linspace(0,120)
y1 = coeffs_multi[1]*np.linspace(0,120)
z1 = x1 + y1 + coeffs_multi[0]
ax.plot3D(x1, y1, z1, 'gray')

ax.set_xlabel('x - Weight')
ax.set_ylabel('y - Volume')
ax.set_zlabel('z - $CO_2$')

My list of data (cars.csv)

Car,Model,Volume,Weight,CO2
Toyoty,Aygo,1000,790,99
Mitsubishi,Space Star,1200,1160,95
Skoda,Citigo,1000,929,95
Fiat,500,900,865,90
Mini,Cooper,1500,1140,105
VW,Up!,1000,929,105
Skoda,Fabia,1400,1109,90
Mercedes,A-Class,1500,1365,92
Ford,Fiesta,1500,1112,98
Audi,A1,1600,1150,99
Hyundai,I20,1100,980,99
Suzuki,Swift,1300,990,101
Ford,Fiesta,1000,1112,99
Honda,Civic,1600,1252,94
Hundai,I30,1600,1326,97
Opel,Astra,1600,1330,97
BMW,1,1600,1365,99
Mazda,3,2200,1280,104
Skoda,Rapid,1600,1119,104
Ford,Focus,2000,1328,105
Ford,Mondeo,1600,1584,94
Opel,Insignia,2000,1428,99
Mercedes,C-Class,2100,1365,99
Skoda,Octavia,1600,1415,99
Volvo,S60,2000,1415,99
Mercedes,CLA,1500,1465,102
Audi,A4,2000,1490,104
Audi,A6,2000,1725,114
Volvo,V70,1600,1523,109
BMW,5,2000,1705,114
Mercedes,E-Class,2100,1605,115
Volvo,XC70,2000,1746,117
Ford,B-Max,1600,1235,104
BMW,216,1600,1390,108
Opel,Zafira,1600,1405,109
Mercedes,SLK,2500,1395,120

Advertisement

Answer

In order,

  1. The method appears to be correct but rather long-winded. See below for a more compact alternative
  2. Not sure what you mean but I think this:
x1 = coeffs_multi[2]*np.linspace(0,120)
y1 = coeffs_multi[1]*np.linspace(0,120)
z1 = x1 + y1 + coeffs_multi[0]

is not quite correct. The coefficients in coeffs_multi_reversed are in order dictated by X namely ‘constant’, ‘Weight’, ‘Volume’. In coeffs_multi they are then ‘Volume’, ‘Weight’, ‘constant’, so the above are in the wrong order

  1. For the plot I would not do x1, y1 etc but simply plot actual vs predicted by the model, like so:
...
predicted = np.array(A) @ coeffs_multi_reversed
ax.scatter(x, y, z, label = 'actual')
ax.scatter(x, y, predicted, label = 'predicted')
...

the graph then looks like this: fit

  1. A much more standard way to do regression is as follows
from sklearn.linear_model import LinearRegression

lin_regr = LinearRegression()
lin_res = lin_regr.fit(x_cars, y_cars)
predicted = lin_regr.predict(x_cars)
print(lin_res.coef_, lin_res.intercept_)
plt.plot(predicted, y_cars, '.', label = 'actual vs predicted')
plt.plot(predicted, predicted, '.', label = 'predicted  vs predicted')
plt.legend(loc = 'best')
plt.show()

prints

[0.00755095 0.00780526] 79.69471929115937

and plots

fit2

Edit: plotting 3D grid

To plot predicted output on a grid, you can do something like

npts = 20

from mpl_toolkits import mplot3d
fig = plt.figure()
ax = plt.axes(projection='3d')
x = x_cars['Weight']
y = x_cars['Volume']
ax.scatter(x, y, z, label = 'actual')

x1 = np.linspace(x.min(), x.max(), npts)
y1 = np.linspace(y.min(), y.max(), npts)
x1m,y1m = np.meshgrid(x1,y1)
z1 = lin_regr.predict(np.hstack([x1m.reshape(-1,1),y1m.reshape(-1,1)]))
ax.scatter(x1m.reshape(-1,1), y1m.reshape(-1,1), z1, '.', s=1, label = 'predicted')

ax.set_xlabel('x - Weight')
ax.set_ylabel('y - Volume')
ax.set_zlabel('z - $CO_2$')
ax.set_title('$CO_2$ emission')

plt.legend(loc = 'best')
plt.show()

for this kind of output:

fit3

User contributions licensed under: CC BY-SA
10 People found this is helpful
Advertisement