It is easy to create (or load) a DataFrame with something like an object-typed column, as so:
[In]: pdf = pd.DataFrame({ "a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9], "combined": [[1, 4, 7], [2, 5, 8], [3, 6, 9]]} ) [Out] a b c combined 0 1 4 7 [1, 4, 7] 1 2 5 8 [2, 5, 8] 2 3 6 9 [3, 6, 9]
I am currently in the position where I have, as separate columns, values that I am required to return as a single column, and need to do so quite efficiently. Is there a fast and efficient way to combine columns into a single object-type column?
In the example above, this would mean already having columns a
, b
, and c
, and I wish to create combined
.
I failed to find a similar example of question online, feel free to link if this is a duplicate.
Advertisement
Answer
Using numpy on large data it is much faster than rest
Update — numpy with list comprehension is much faster takes only 0.77s
pdf['combined'] = [x for x in pdf[['a', 'b', 'c']].to_numpy()] # pdf['combined'] = pdf[['a', 'b', 'c']].to_numpy().tolist()
Comparision of speed
import pandas as pd import sys import time def f1(): pdf = pd.DataFrame({"a": [1, 2, 3]*1000000, "b": [4, 5, 6]*1000000, "c": [7, 8, 9]*1000000}) s0 = time.time() pdf.assign(combined=pdf.agg(list, axis=1)) print(time.time() - s0) def f2(): pdf = pd.DataFrame({"a": [1, 2, 3]*1000000, "b": [4, 5, 6]*1000000, "c": [7, 8, 9]*1000000}) s0 = time.time() pdf['combined'] = [x for x in pdf[['a', 'b', 'c']].to_numpy()] # pdf['combined'] = pdf[['a', 'b', 'c']].to_numpy().tolist() print(time.time() - s0) def f3(): pdf = pd.DataFrame({"a": [1, 2, 3]*1000000, "b": [4, 5, 6]*1000000, "c": [7, 8, 9]*1000000}) s0 = time.time() cols = ['a', 'b', 'c'] pdf['combined'] = pdf[cols].apply(lambda row: list(row.values), axis=1) print(time.time() - s0) def f4(): pdf = pd.DataFrame({"a": [1, 2, 3]*1000000, "b": [4, 5, 6]*1000000, "c": [7, 8, 9]*1000000}) s0 = time.time() pdf["combined"] = pdf.apply(pd.Series.tolist,axis=1) print(time.time() - s0) if __name__ == '__main__': eval(f'{sys.argv[1]}()')
➜ python test.py f1 17.766116857528687 ➜ python test.py f2 0.7762737274169922 ➜ python test.py f3 14.403311252593994 ➜ python test.py f4 12.631694078445435