Skip to content
Advertisement

How to do linear regression, taking errorbars into account?

I am doing a computer simulation for some physical system of finite size, and after this I am doing extrapolation to the infinity (Thermodynamic limit). Some theory says that data should scale linearly with system size, so I am doing linear regression.

The data I have is noisy, but for each data point I can estimate errorbars. So, for example data points looks like:

x_list = [0.3333333333333333, 0.2886751345948129, 0.25, 0.23570226039551587, 0.22360679774997896, 0.20412414523193154, 0.2, 0.16666666666666666]
y_list = [0.13250359351851854, 0.12098339583333334, 0.12398501145833334, 0.09152715, 0.11167239583333334, 0.10876248333333333, 0.09814170444444444, 0.08560799305555555]
y_err = [0.003306749165349316, 0.003818446389148108, 0.0056036878203831785, 0.0036635292592592595, 0.0037034897788415424, 0.007576672222222223, 0.002981084130692832, 0.0034913019065973983]

Let’s say I am trying to do this in Python.

  1. First way that I know is:

    m, c, r_value, p_value, std_err = scipy.stats.linregress(x_list, y_list)
    

    I understand this gives me errorbars of the result, but this does not take into account errorbars of the initial data.

  2. Second way that I know is:

    m, c = numpy.polynomial.polynomial.polyfit(x_list, y_list, 1, w = [1.0 / ty for ty in y_err], full=False)
    

Here we use the inverse of the errorbar for the each point as a weight that is used in the least square approximation. So if a point is not really that reliable it will not influence result a lot, which is reasonable.

But I can not figure out how to get something that combines both these methods.

What I really want is what second method does, meaning use regression when every point influences the result with different weight. But at the same time I want to know how accurate my result is, meaning, I want to know what are errorbars of the resulting coefficients.

How can I do this?

Advertisement

Answer

Not entirely sure if this is what you mean, but…using pandas, statsmodels, and patsy, we can compare an ordinary least-squares fit and a weighted least-squares fit which uses the inverse of the noise you provided as a weight matrix (statsmodels will complain about sample sizes < 20, by the way).

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
mpl.rcParams['figure.dpi'] = 300

import statsmodels.formula.api as sm

x_list = [0.3333333333333333, 0.2886751345948129, 0.25, 0.23570226039551587, 0.22360679774997896, 0.20412414523193154, 0.2, 0.16666666666666666]
y_list = [0.13250359351851854, 0.12098339583333334, 0.12398501145833334, 0.09152715, 0.11167239583333334, 0.10876248333333333, 0.09814170444444444, 0.08560799305555555]
y_err = [0.003306749165349316, 0.003818446389148108, 0.0056036878203831785, 0.0036635292592592595, 0.0037034897788415424, 0.007576672222222223, 0.002981084130692832, 0.0034913019065973983]

# put x and y into a pandas DataFrame, and the weights into a Series
ws = pd.DataFrame({
    'x': x_list,
    'y': y_list
})
weights = pd.Series(y_err)

wls_fit = sm.wls('x ~ y', data=ws, weights=1 / weights).fit()
ols_fit = sm.ols('x ~ y', data=ws).fit()

# show the fit summary by calling wls_fit.summary()
# wls fit r-squared is 0.754
# ols fit r-squared is 0.701

# let's plot our data
plt.clf()
fig = plt.figure()
ax = fig.add_subplot(111, facecolor='w')
ws.plot(
    kind='scatter',
    x='x',
    y='y',
    style='o',
    alpha=1.,
    ax=ax,
    title='x vs y scatter',
    edgecolor='#ff8300',
    s=40
)

# weighted prediction
wp, = ax.plot(
    wls_fit.predict(),
    ws['y'],
    color='#e55ea2',
    lw=1.,
    alpha=1.0,
)
# unweighted prediction
op, = ax.plot(  
    ols_fit.predict(),
    ws['y'],
    color='k',
    ls='solid',
    lw=1,
    alpha=1.0,
)
leg = plt.legend(
    (op, wp),
    ('Ordinary Least Squares', 'Weighted Least Squares'),
    loc='upper left',
    fontsize=8)

plt.tight_layout()
fig.set_size_inches(6.40, 5.12)
plt.show()

OLS vs WLS

WLS residuals:

[0.025624005084707302,
 0.013611438189866154,
 -0.033569595462217161,
 0.044110895217014695,
 -0.025071632845910546,
 -0.036308252199571928,
 -0.010335514810672464,
 -0.0081511479431851663]

The mean squared error of the residuals for the weighted fit (wls_fit.mse_resid or wls_fit.scale) is 0.22964802498892287, and the r-squared value of the fit is 0.754.

You can obtain a wealth of data about the fits by calling their summary() method, and/or doing dir(wls_fit), if you need a list of every available property and method.

User contributions licensed under: CC BY-SA
2 People found this is helpful
Advertisement