If i want to do an outer product of 2 vectors to create a 2d matrix, each element a product of the two respective elements in the original vectors:
b = np.arange(5).reshape((1, 5))
a = np.arange(5).reshape((5, 1))
a * b
array([[ 0, 0, 0, 0, 0],
[ 0, 1, 2, 3, 4],
[ 0, 2, 4, 6, 8],
[ 0, 3, 6, 9, 12],
[ 0, 4, 8, 12, 16]])
I want the same for 3 (or for n) vectors.
An equivalent non numpy answer:
a = np.arange(5)
b = np.arange(5)
c = np.arange(5)
res = np.zeros((a.shape[0], b.shape[0], c.shape[0]))
for ia in range(len(a)):
for ib in range(len(b)):
for ic in range(len(c)):
res[ia, ib, ic] = a[ia] * b[ib] * c[ic]
print(res)
out:
JavaScript130301[[[ 0. 0. 0. 0. 0.]
2[ 0. 0. 0. 0. 0.]
3[ 0. 0. 0. 0. 0.]
4[ 0. 0. 0. 0. 0.]
5[ 0. 0. 0. 0. 0.]]
6
7[[ 0. 0. 0. 0. 0.]
8[ 0. 1. 2. 3. 4.]
9[ 0. 2. 4. 6. 8.]
10[ 0. 3. 6. 9. 12.]
11[ 0. 4. 8. 12. 16.]]
12
13[[ 0. 0. 0. 0. 0.]
14[ 0. 2. 4. 6. 8.]
15[ 0. 4. 8. 12. 16.]
16[ 0. 6. 12. 18. 24.]
17[ 0. 8. 16. 24. 32.]]
18
19[[ 0. 0. 0. 0. 0.]
20[ 0. 3. 6. 9. 12.]
21[ 0. 6. 12. 18. 24.]
22[ 0. 9. 18. 27. 36.]
23[ 0. 12. 24. 36. 48.]]
24
25[[ 0. 0. 0. 0. 0.]
26[ 0. 4. 8. 12. 16.]
27[ 0. 8. 16. 24. 32.]
28[ 0. 12. 24. 36. 48.]
29[ 0. 16. 32. 48. 64.]]]
30
How to do this with numpy [no for loops]?
Also, how to do this for a general function, not necessarily *
?
Advertisement
Answer
NumPy provides you with np.outer()
for computing the outer product.
This is a less powerful version of more versatile approaches:
np.einsum()
is the only one capable of handling more than two input arrays:
import numpy as np
def prod(items, start=1):
for item in items:
start = start * item
return start
a = np.arange(5)
b = np.arange(5)
c = np.arange(5)
r0 = np.zeros((a.shape[0], b.shape[0], c.shape[0]))
for ia in range(len(a)):
for ib in range(len(b)):
for ic in range(len(c)):
r0[ia, ib, ic] = a[ia] * b[ib] * c[ic]
r1 = prod([a[:, None, None], b[None, :, None], c[None, None, :]])
# same as: r1 = a[:, None, None] * b[None, :, None] * c[None, None, :]
# same as: r1 = a.reshape(-1, 1, 1) * b.reshape(1, -1, 1) * c.reshape(1, 1, -1)
print(np.all(r0 == r2))
# True
r2 = np.einsum('i,j,k->ijk', a, b, c)
print(np.all(r0 == r2))
# True
# as per @hpaulj suggestion
r3 = prod(np.ix_(a, b, c))
print(np.all(r0 == r3))
# True
Of course, the broadcasting approach (which is the same that you used with the array.reshape()
version of your code, except that it uses a slightly different syntax for providing the correct shape), can be automatized by explicitly building the slicing (or equivalently the array.reshape()
parameters).