I want to divide the first column of this table element wise by 3.6.
JavaScript
x
5
1
dict_read = {
2
'tractionForceTable': [']traction_V(km/h)_Force(N)', 'table']}
3
4
outputdict = {key: framehandle.value_readin(value) for (key, value) in dict_read.items()}`
5
It throws an error something like :
JavaScript
1
9
1
outputdict["traction_ForceTable"] = outputdict["tractionForceTable"][:, 0] / 3.6
2
File "C:UsershppatDesktopvenvlibsite-packagespandascoreframe.py", line 3505, in __getitem__
3
indexer = self.columns.get_loc(key)
4
File "C:UsershppatDesktopvenvlibsite-packagespandascoreindexesbase.py", line 3636, in get_loc
5
self._check_indexing_error(key)
6
File "C:UsershppatDesktopvenvlibsite-packagespandascoreindexesbase.py", line 5651, in _check_indexing_error
7
raise InvalidIndexError(key)
8
pandas.errors.InvalidIndexError: (slice(None, None, None), 0)
9
Here’s what I tried:
JavaScript
1
2
1
outputdict["traction_Table"] = outputdict["tractionForceTable"][:, 1] / 3.6
2
Advertisement
Answer
There are several ways to do it, here are two. I suggest from your error message that your data is in a pd.DataFrame. I used a shortened version of your data.
JavaScript
1
5
1
import pandas as pd
2
df = pd.DataFrame({'velocity': [1,2,3,4,5],
3
'mfbp': [36600000, 1800000, 1200000, 900000, 720000]})
4
5
You could use map (or apply) and define a lambda function that is applied to every cell.
JavaScript
1
2
1
df['mfbp'].map(lambda x: x/3.6)
2
Or you use the pandas built-in method pd.Series.divide
JavaScript
1
2
1
df['mfbp'].divide(3.6)
2
Output in both cases:
JavaScript
1
6
1
0 1.016667e+07
2
1 5.000000e+05
3
2 3.333333e+05
4
3 2.500000e+05
5
4 2.000000e+05
6