I am able to submit batches of concurrent.futures.ProcessPoolExecutor.submits()
where each batch may contain several submit()
. However, I noticed that if each batch of submits consumes a significant about of RAM, there can be quite a bit of RAM usage inefficiencies; need to wait for all futures in the batch to be completed before another batch of submit()
can be submitted.
How does one create a continuous stream of Python’s concurrent.futures.ProcessPoolExecutor.submit()
until some condition is satisfied?
Test Script:
#!/usr/bin/env python3
import numpy as np
from numpy.random import default_rng, SeedSequence
import concurrent.futures as cf
from itertools import count
def dojob( process, iterations, samples, rg ):
# Do some tasks
result = []
for i in range( iterations ):
a = rg.standard_normal( samples )
b = rg.integers( -3, 3, samples )
mean = np.mean( a + b )
result.append( ( i, mean ) )
return { process : result }
if __name__ == '__main__':
cpus = 2
iterations = 10000
samples = 1000
# Setup NumPy Random Generator
ss = SeedSequence( 1234567890 )
child_seeds = ss.spawn( cpus )
rg_streams = [ default_rng(s) for s in child_seeds ]
# Peform concurrent analysis by batches
counter = count( start=0, step=1 )
# Serial Run of dojob
process = next( counter )
for cpu in range( cpus ):
process = next( counter )
rg = rg_streams[ cpu ]
rdict = dojob( process, iterations, samples, rg )
print( 'rdict', rdict )
# Concurrent Run of dojob
futures = []
results = []
with cf.ProcessPoolExecutor( max_workers=cpus ) as executor:
while True:
for cpu in range( cpus ):
process = next( counter )
rg = rg_streams[ cpu ]
futures.append( executor.submit( dojob, process, iterations, samples, rg ) )
for future in cf.as_completed( futures ):
# Do some post processing
r = future.result()
for k, v in r.items():
if len( results ) < 5000:
results.append( np.std( v ) )
print( k, len(results) )
if len(results) <= 100: #Put a huge number to simulate continuous streaming
futures = []
child_seeds = child_seeds[0].spawn( cpus )
rg_streams = [ default_rng(s) for s in child_seeds ]
else:
break
print( 'n*** Concurrent Analyses Ended ***' )
Advertisement
Answer
To expand on my comment, how about something like this, using the completion callback and a threading.Condition
? I took the liberty of adding a progress indicator too.
EDIT: I refactored this into a neat function you pass your desired concurrency and queue depth, as well as a function that generates new jobs, and another function that processes a result and lets the executor know whether you’ve had enough.
import concurrent.futures as cf
import threading
import time
from itertools import count
import numpy as np
from numpy.random import SeedSequence, default_rng
def dojob(process, iterations, samples, rg):
# Do some tasks
result = []
for i in range(iterations):
a = rg.standard_normal(samples)
b = rg.integers(-3, 3, samples)
mean = np.mean(a + b)
result.append((i, mean))
return {process: result}
def execute_concurrently(cpus, max_queue_length, get_job_fn, process_result_fn):
running_futures = set()
jobs_complete = 0
job_cond = threading.Condition()
all_complete_event = threading.Event()
def on_complete(future):
nonlocal jobs_complete
if process_result_fn(future.result()):
all_complete_event.set()
running_futures.discard(future)
jobs_complete += 1
with job_cond:
job_cond.notify_all()
time_since_last_status = 0
start_time = time.time()
with cf.ProcessPoolExecutor(cpus) as executor:
while True:
while len(running_futures) < max_queue_length:
fn, args = get_job_fn()
fut = executor.submit(fn, *args)
fut.add_done_callback(on_complete)
running_futures.add(fut)
with job_cond:
job_cond.wait()
if all_complete_event.is_set():
break
if time.time() - time_since_last_status > 1.0:
rps = jobs_complete / (time.time() - start_time)
print(
f"{len(running_futures)} running futures on {cpus} CPUs, "
f"{jobs_complete} complete. RPS: {rps:.2f}"
)
time_since_last_status = time.time()
def main():
ss = SeedSequence(1234567890)
counter = count(start=0, step=1)
iterations = 10000
samples = 1000
results = []
def get_job():
seed = ss.spawn(1)[0]
rg = default_rng(seed)
process = next(counter)
return dojob, (process, iterations, samples, rg)
def process_result(result):
for k, v in result.items():
results.append(np.std(v))
if len(results) >= 10000:
return True # signal we're complete
execute_concurrently(
cpus=16,
max_queue_length=20,
get_job_fn=get_job,
process_result_fn=process_result,
)
if __name__ == "__main__":
main()