I’m defining a custom split callable for TextVectorization like this:
import tensorflow as tf
from tensorflow import keras
@tf.function
def split_slash(input_str):
return tf.strings.split(input_str, sep="/")
inputs = ["text/that/has/a","lot/of/slashes/inside","for/testing/purposes/foo"]
input_text_processor = keras.layers.TextVectorization(max_tokens=13, split = split_slash)
input_text_processor.adapt(inputs)
example_tokens = input_text_processor(inputs)
print(example_tokens)
for x in inputs:
print(split_slash(x))
resulting in:
tf.Tensor( [[2] [3] [4]], shape=(3, 1), dtype=int64) tf.Tensor([b'text' b'that' b'has' b'a'], shape=(4,), dtype=string) tf.Tensor([b'lot' b'of' b'slashes' b'inside'], shape=(4,), dtype=string) tf.Tensor([b'for' b'testing' b'purposes' b'foo'], shape=(4,), dtype=string)
as seen above the split function is working correctly outside of the TextVectorization layer but failes when passed as a callable
Advertisement
Answer
Your split_slash function does not seem to properly tokenize the phrases.
print(f"Vocabulary:tt{input_text_processor.get_vocabulary()}")
'''
Vocabulary:['',
'[UNK]',
'textthathasa',
'lotofslashesinside',
'fortestingpurposesfoo']
'''
It is probably because your TextVectorization layer strips your phrases of all punctuation including / by default before your split_slash function is called. Setting standardize=None in your TextVectorization layer will do the trick for you.
Alternatively, you could also try the following snippet.
import tensorflow as tf
def custom_standardization(input_data):
return tf.strings.regex_replace(input_data, '/', ' ')
inputs = ["text/that/has/a","lot/of/slashes/inside","for/testing/purposes/foo"]
input_text_processor = tf.keras.layers.TextVectorization(max_tokens=13, standardize=custom_standardization) #split = split_slash)
input_text_processor.adapt(inputs)
print(f"Vocabulary:tt{input_text_processor.get_vocabulary()}")
example_tokens = input_text_processor(inputs)
print(example_tokens)
for x in inputs:
print(split_slash(x))
Note that your phrases are split on whitespace by default after removing your slashes.
''' Vocabulary: ['', '[UNK]', 'that', 'text', 'testing', 'slashes', 'purposes', 'of', 'lot', 'inside', 'has', 'for', 'foo'] tf.Tensor( [[ 3 2 10 1] [ 8 7 5 9] [11 4 6 12]], shape=(3, 4), dtype=int64) tf.Tensor([b'text' b'that' b'has' b'a'], shape=(4,), dtype=string) tf.Tensor([b'lot' b'of' b'slashes' b'inside'], shape=(4,), dtype=string) tf.Tensor([b'for' b'testing' b'purposes' b'foo'], shape=(4,), dtype=string) '''
For more information, check out the documentation.