Skip to content
Advertisement

How to correctly pass a split function to TextVectorization layer

I’m defining a custom split callable for TextVectorization like this:

import tensorflow as tf
from tensorflow import keras
@tf.function
def split_slash(input_str):
  return tf.strings.split(input_str, sep="/")
inputs = ["text/that/has/a","lot/of/slashes/inside","for/testing/purposes/foo"]
input_text_processor = keras.layers.TextVectorization(max_tokens=13, split = split_slash)
    
input_text_processor.adapt(inputs)
example_tokens = input_text_processor(inputs)
print(example_tokens)
for x in inputs:
  print(split_slash(x))

resulting in:

tf.Tensor(
[[2]
 [3]
 [4]], shape=(3, 1), dtype=int64)
tf.Tensor([b'text' b'that' b'has' b'a'], shape=(4,), dtype=string)
tf.Tensor([b'lot' b'of' b'slashes' b'inside'], shape=(4,), dtype=string)
tf.Tensor([b'for' b'testing' b'purposes' b'foo'], shape=(4,), dtype=string)

as seen above the split function is working correctly outside of the TextVectorization layer but failes when passed as a callable

Advertisement

Answer

Your split_slash function does not seem to properly tokenize the phrases.

print(f"Vocabulary:tt{input_text_processor.get_vocabulary()}")
'''
Vocabulary:['', 
           '[UNK]', 
           'textthathasa', 
           'lotofslashesinside', 
           'fortestingpurposesfoo']
'''

It is probably because your TextVectorization layer strips your phrases of all punctuation including / by default before your split_slash function is called. Setting standardize=None in your TextVectorization layer will do the trick for you.

Alternatively, you could also try the following snippet.

import tensorflow as tf

def custom_standardization(input_data):
  return tf.strings.regex_replace(input_data, '/', ' ')

inputs = ["text/that/has/a","lot/of/slashes/inside","for/testing/purposes/foo"]

input_text_processor = tf.keras.layers.TextVectorization(max_tokens=13, standardize=custom_standardization) #split = split_slash)

input_text_processor.adapt(inputs)
print(f"Vocabulary:tt{input_text_processor.get_vocabulary()}")
example_tokens = input_text_processor(inputs)

print(example_tokens)
for x in inputs:
  print(split_slash(x))

Note that your phrases are split on whitespace by default after removing your slashes.

'''
Vocabulary:     ['', '[UNK]', 'that', 'text', 'testing', 'slashes', 'purposes', 'of', 'lot', 'inside', 'has', 'for', 'foo']
tf.Tensor(
[[ 3  2 10  1]
 [ 8  7  5  9]
 [11  4  6 12]], shape=(3, 4), dtype=int64)
tf.Tensor([b'text' b'that' b'has' b'a'], shape=(4,), dtype=string)
tf.Tensor([b'lot' b'of' b'slashes' b'inside'], shape=(4,), dtype=string)
tf.Tensor([b'for' b'testing' b'purposes' b'foo'], shape=(4,), dtype=string)
'''

For more information, check out the documentation.

User contributions licensed under: CC BY-SA
10 People found this is helpful
Advertisement