How to convert more than 3 level N nested dictionary to levelled dataframe?
input_dict = { '.Stock': { '.No[0]': '3241512)', '.No[1]': '1111111111', '.No[2]': '444444444444', '.Version': '46', '.Revision': '78' }, '.Time': '12.11.2022' }
what I expect:
import pandas as pd expected_df = pd.DataFrame([{'level_0': '.Stock', 'level_1': '.No_0', "value": '3241512'}, {'level_0': '.Stock', 'level_1': '.No_1', "value": '1111111111',}, {'level_0': '.Stock', 'level_1': '.No_2', "value": '444444444444'}, {'level_0': '.Stock', 'level_1': '.Version', "value": '46'}, {'level_0': '.Stock', 'level_1': '.Revision', "value": '78'}, {'level_0': '.Time', "value": '12.11.2022'}])
index | level_0 | level_1 | value |
---|---|---|---|
0 | .Stock | .No_0 | 3241512 |
1 | .Stock | .No_1 | 1111111111 |
2 | .Stock | .No_2 | 444444444444 |
3 | .Stock | .Version | 46 |
4 | .Stock | .Revision | 78 |
5 | .Time | NaN | 12.11.2022 |
Firsly I need to convert nested dictionary to list of levelled dictionaries, than lastly convert list of dictionaries to dataframe. How can I convert, pls help me!
I’ve already tried the code below but it doesn’t show exactly the right result.
pd.DataFrame(input_dict).unstack().to_frame().reset_index()
Advertisement
Answer
I found solution, thanks for your comments:(
def nesting_list_convert(in_dict,level=0): out_list = [] for k1, v1 in in_dict.items(): if isinstance(v1, dict): temp_list = nesting_list_convert(v1,level+1) for element in temp_list: temp_dict = {("level_"+str(level)) : k1} temp_dict.update(element) out_list.append(temp_dict) else: out_list.append({("level_"+str(level)) : k1,"value":v1}) return out_list out_df = pd.DataFrame(nesting_list_convert(input_dict)) out_df = out_df.reindex(sorted(out_df.columns), axis=1)
index | level_0 | level_1 | value |
---|---|---|---|
0 | .Stock | .No_0 | 3241512 |
1 | .Stock | .No_1 | 1111111111 |
2 | .Stock | .No_2 | 444444444444 |
3 | .Stock | .Version | 46 |
4 | .Stock | .Revision | 78 |
5 | .Time | NaN | 12.11.2022 |
This solves 6′ nested level of dictionary.