I have a dataframe with columns like this:
A B 0 - 5923FoxRd 5923 Fox Rd 1 631 Newhaven Ave Modesto 2 Saratoga Street, Suite 200 Saratoga Street, Suite 200
I want to create a list with values from A that matches values from B. The list should look like [- 5923FoxRd, Saratoga Street, Suite 200…]. What is the easiest way to do this?
Advertisement
Answer
To make a little go a long way, do the following:
- Create a new series for each column and pass the regex pattern
W+
tostr.replace()
- use
str.lower()
- create replace lists to normalize
drive
todr
,avenue
toave
, etc.
s1 = df['A'].str.replace('W+', '').str.lower() s2 = df['B'].str.replace('W+', '').str.lower() lst = [*df[s1==s2]['A']] lst Out[1]: ['- 5923FoxRd', 'Saratoga Street, Suite 200']
This is what s1
and s2
look like:
print(s1,s2) 0 5923foxrd 1 631newhavenave 2 saratogastreetsuite200 Name: A, dtype: object 0 5923foxrd 1 modesto 2 saratogastreetsuite200 Name: B, dtype: object
From there, you might want to create some replace values in order to normalize your data even further like:
to_replace = ['drive', 'avenue', 'street'] replaced = ['dr', 'ave', 'str'] to_replace = ['drive', 'avenue', 'street'] replaced = ['dr', 'ave', 'str'] s1 = df['A'].str.replace('W+', '').str.lower().replace(to_replace, replaced, regex=True) s2 = df['B'].str.replace('W+', '').str.lower().replace(to_replace, replaced, regex=True) lst = [*df[s1==s2]['A']] lst print(s1,s2) 0 5923foxrd 1 631newhavenave 2 saratogastrsuite200 Name: A, dtype: object 0 5923foxrd 1 modesto 2 saratogastrsuite200 Name: B, dtype: object