How to change colors in decision tree plot using sklearn.tree.plot_tree without using graphviz as in this question: Changing colors for decision tree plot created using export graphviz?
plt.figure(figsize=[21, 6]) ax1 = plt.subplot(121) ax2 = plt.subplot(122) ax1.plot(X[:, 0][y == 0], X[:, 1][y == 0], "bo") ax1.plot(X[:, 0][y == 1], X[:, 1][y == 1], "g^") ax1.contourf(xx, yy, pred.reshape(xx.shape), cmap=matplotlib.colors.ListedColormap(['b', 'g']), alpha=0.25) ax1.set_title(title) plot_tree(tree_clf, feature_names=["X", "y"], class_names=["blue", "green"], filled=True, rounded=True)
Advertisement
Answer
Many matplotlib functions follow the color cycler to assign default colors, but that doesn’t seem to apply here.
The following approach loops through the generated annotation texts (artists
) and the clf tree structure to assign colors depending on the majority class and the impurity (gini). Note that we can’t use alpha, as a transparent background would show parts of arrows that are usually hidden.
from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap, to_rgb import numpy as np from sklearn import tree X = np.random.rand(50, 2) * np.r_[100, 50] y = X[:, 0] - X[:, 1] > 20 clf = tree.DecisionTreeClassifier(random_state=2021) clf = clf.fit(X, y) fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=[21, 6]) colors = ['crimson', 'dodgerblue'] ax1.plot(X[:, 0][y == 0], X[:, 1][y == 0], "o", color=colors[0]) ax1.plot(X[:, 0][y == 1], X[:, 1][y == 1], "^", color=colors[1]) xx, yy = np.meshgrid(np.linspace(X[:, 0].min(), X[:, 0].max(), 100), np.linspace(X[:, 1].min(), X[:, 1].max(), 100)) pred = clf.predict(np.c_[(xx.ravel(), yy.ravel())]) ax1.contourf(xx, yy, pred.reshape(xx.shape), cmap=ListedColormap(colors), alpha=0.25) # ax2.set_prop_cycle(mpl.cycler(color=colors)) # doesn't seem to work artists = tree.plot_tree(clf, feature_names=["X", "y"], class_names=colors, filled=True, rounded=True, ax=ax2) for artist, impurity, value in zip(artists, clf.tree_.impurity, clf.tree_.value): # let the max value decide the color; whiten the color depending on impurity (gini) r, g, b = to_rgb(colors[np.argmax(value)]) f = impurity * 2 # for N colors: f = impurity * N/(N-1) if N>1 else 0 artist.get_bbox_patch().set_facecolor((f + (1-f)*r, f + (1-f)*g, f + (1-f)*b)) artist.get_bbox_patch().set_edgecolor('black') plt.tight_layout() plt.show()