I have a pandas DataFrame like the below:
| Price | Date | 
|---|---|
| 25149.570 | 2/5/2017 14:22 | 
| 24799.680 | 2/5/2017 14:22 | 
| 24799.680 | 2/5/2017 14:22 | 
| 14570.000 | 2/5/2017 14:47 | 
| 14570.001 | 2/5/2017 14:47 | 
| 14570.001 | 2/5/2017 14:47 | 
| 14570.000 | 2/5/2017 15:01 | 
| 14570.001 | 2/5/2017 15:01 | 
| 14570.001 | 2/5/2017 15:01 | 
| 14600.000 | 2/6/2017 17:49 | 
| 14600.000 | 2/6/2017 17:49 | 
| 14800.000 | 2/6/2017 17:49 | 
| 14600.000 | 2/6/2017 17:49 | 
| 14600.000 | 2/6/2017 17:49 | 
| 14600.000 | 2/6/2017 18:30 | 
| 14600.000 | 2/6/2017 18:30 | 
| 14800.000 | 2/6/2017 18:30 | 
| 14600.000 | 2/6/2017 18:30 | 
| 14600.000 | 2/6/2017 18:30 | 
I want to find first and last value of each day based on Date column. The result can be like the below for the first day:
| Date | first | last | 
|---|---|---|
| 2/5/2017 | 25149.57 | 14570.001 | 
I try to use this Q/A solution but it does not work.
How do I find First and Last Value of each day (group by date)?
Advertisement
Answer
You could convert “Date” column values to dates (without hours); then groupby it and use first and last to get the desired outcome:
out = df.groupby(pd.to_datetime(df['Date']).dt.strftime('%m/%d/%Y'))['Price'].agg(['first', 'last']).reset_index()
Output:
Date first last 0 02/05/2017 25149.57 14570.001 1 02/06/2017 14600.00 14600.000