Skip to content
Advertisement

How can I get torch-geometric to work using Nix?

I am trying to get the Python package torch-geometric to work using Nix (I am on NixOS). Currently, I use mach-nix to try and setup a Python environment. However, the difficulty is that some of the dependencies should be downloaded from a separate file server (not pypi), i.e. https://pytorch-geometric.com/whl/torch-1.8.0+cpu.html. I am first trying to setup an environment containing a single torch-geometric dependency: torch-sparse.

Currently I have the following shell.nix:

{ pkgs ? import <nixpkgs> {} }:

let
  mach-nix = import (builtins.fetchGit {
    url = "https://github.com/DavHau/mach-nix/";
    ref = "refs/tags/3.3.0";
  }) {
    python = "python38";
  };
  sparse = mach-nix.buildPythonPackage {
    pname = "torch_sparse";
    version = "0.6.9";
    requirements = ''
      torch
      scipy
      pytest
      pytest-cov
      pytest-runner
    '';
    src = builtins.fetchGit {
      url = "https://github.com/rusty1s/pytorch_sparse";
      ref = "refs/tags/0.6.9";
    };
  };
in mach-nix.mkPython {
  requirements = "torch-sparse";
  packagesExtra = [
    sparse
  ];
}

Which, upon running nix-shell, fails with the following error message:

running build_ext
error: [Errno 2] No such file or directory: 'which'
builder for '/nix/store/fs9nrrd2a233xp5d6njy6639yjbxp4g0-python3.8-torch_sparse-0.6.9.drv' failed with exit code 1

I tried adding the which package to either checkInputs and buildInputs, but that does not solve the problem. Evidently, I try to build the package directly from its GitHub repo, as I am unsure on how to reference a wheel package in mach-nix. I am relatively new to the NixOS environment, and, quite frankly, I am completely lost.

How should I go about installing a Python package such as torch-sparse or torch-geometric? Am I even using the correct tools?

Advertisement

Answer

I have managed to come up with a working Nix expression. I will leave the answer here for future reference. Running the following expression using nix-shell will create a shell with torch-1.8.0 and torch-geometric-1.7.0 and their required dependencies.

{ pkgs ? import <nixpkgs> { } }:

let
  python = pkgs.python38;
  pytorch-180 = let
    pyVerNoDot = builtins.replaceStrings [ "." ] [ "" ] python.pythonVersion;
    unsupported = throw "Unsupported system";
    version = "1.8.0";
  in python.pkgs.buildPythonPackage {
    inherit version;

    pname = "pytorch";

    format = "wheel";

    src = pkgs.fetchurl {
      name = "torch-${version}-cp38-cp38-linux_x86_64.whl";
      url =
        "https://download.pytorch.org/whl/cu111/torch-${version}%2Bcu111-cp38-cp38-linux_x86_64.whl";
      hash = "sha256-4NYiAkYfGXm3orLT8Y5diepRMAg+WzJelncy2zJp+Ho=";
    };

    nativeBuildInputs = with pkgs; [ addOpenGLRunpath patchelf ];

    propagatedBuildInputs = with python.pkgs; [
      future
      numpy
      pyyaml
      requests
      typing-extensions
    ];

    postInstall = ''
      # ONNX conversion
      rm -rf $out/bin
    '';

    postFixup = let rpath = pkgs.lib.makeLibraryPath [ pkgs.stdenv.cc.cc.lib ];
    in ''
      find $out/${python.sitePackages}/torch/lib -type f ( -name '*.so' -or -name '*.so.*' ) | while read lib; do
        echo "setting rpath for $lib..."
        patchelf --set-rpath "${rpath}:$out/${python.sitePackages}/torch/lib" "$lib"
        addOpenGLRunpath "$lib"
      done
    '';

    pythonImportsCheck = [ "torch" ];

    meta = with pkgs.lib; {
      description =
        "Open source, prototype-to-production deep learning platform";
      homepage = "https://pytorch.org/";
      changelog = "https://github.com/pytorch/pytorch/releases/tag/v${version}";
      license = licenses.unfree; # Includes CUDA and Intel MKL.
      platforms = platforms.linux;
      maintainers = with maintainers; [ danieldk ];
    };
  };
  sparse = with python.pkgs;
    buildPythonPackage rec {
      pname = "torch_sparse";
      version = "0.6.9";

      src = pkgs.fetchurl {
        name = "${pname}-${version}-cp38-cp38-linux_x86_64.whl";
        url =
          "https://pytorch-geometric.com/whl/torch-1.8.0+cpu/${pname}-${version}-cp38-cp38-linux_x86_64.whl";
        hash = "sha256-6dmZNQ0FlwKdfESKhvv8PPwzgsJFWlP8tYXWu2JLiMk=";
      };

      format = "wheel";

      propagatedBuildInputs = [ pytorch-180 scipy ];
      # buildInputs = [ pybind11 ];
      # nativeBuildInputs = [ pytest-runner pkgs.which ];

      doCheck = false;

      postInstall = ''
        rm -rf $out/${python.sitePackages}/test
      '';
    };
  scatter = with python.pkgs;
    buildPythonPackage rec {
      pname = "torch_scatter";
      version = "2.0.7";

      src = pkgs.fetchurl {
        name = "${pname}-${version}-cp38-cp38-linux_x86_64.whl";
        url =
          "https://pytorch-geometric.com/whl/torch-1.8.0+cpu/${pname}-${version}-cp38-cp38-linux_x86_64.whl";
        hash = "sha256-MRoFretgyEpq+7aJZc0399Kd+f28Uhn5+CxW5ZIKwcg=";
      };

      format = "wheel";

      propagatedBuildInputs = [ pytorch-180 ];

      doCheck = false;

      postInstall = ''
        rm -rf $out/${python.sitePackages}/test
      '';
    };
  cluster = with python.pkgs;
    buildPythonPackage rec {
      pname = "torch_cluster";
      version = "1.5.9";

      src = pkgs.fetchurl {
        name = "${pname}-${version}-cp38-cp38-linux_x86_64.whl";
        url =
          "https://pytorch-geometric.com/whl/torch-1.8.0+cpu/${pname}-${version}-cp38-cp38-linux_x86_64.whl";
        hash = "sha256-E2nywtiZ7m7VA1J7AY7gAHYvyN9H3zl/W0/WsZLzwF8=";
      };

      format = "wheel";

      propagatedBuildInputs = [ pytorch-180 ];

      doCheck = false;

      postInstall = ''
        rm -rf $out/${python.sitePackages}/test
      '';
    };
  spline = with python.pkgs;
    buildPythonPackage rec {
      pname = "torch_spline_conv";
      version = "1.2.1";

      src = pkgs.fetchurl {
        name = "${pname}-${version}-cp38-cp38-linux_x86_64.whl";
        url =
          "https://pytorch-geometric.com/whl/torch-1.8.0+cpu/${pname}-${version}-cp38-cp38-linux_x86_64.whl";
        hash = "sha256-ghSzoxoqSccPAZzfcHJEPYySQ/KYqQ90mFsOdt1CjUw=";
      };

      format = "wheel";

      propagatedBuildInputs = [ pytorch-180 ];

      doCheck = false;

      postInstall = ''
        rm -rf $out/${python.sitePackages}/test
      '';
    };
  python-louvain = with python.pkgs;
    buildPythonPackage rec {
      pname = "python-louvain";
      version = "0.15";

      src = fetchPypi {
        inherit pname version;
        sha256 = "1sqp97fwh4asx0jr72x8hil8z8fcg2xq92jklmh2m599pvgnx19a";
      };

      propagatedBuildInputs = [ numpy networkx ];

      doCheck = false;
    };
  googledrivedownloader = with python.pkgs;
    buildPythonPackage rec {
      pname = "googledrivedownloader";
      version = "0.4";

      src = fetchPypi {
        inherit pname version;
        sha256 = "0172l1f8ys0913wcr16lzx87vsnapppih62qswmvzwrggcrw2d2b";
      };

      doCheck = false;
    };
  geometric = with python.pkgs;
    buildPythonPackage rec {
      pname = "torch_geometric";
      version = "1.7.0";

      src = fetchPypi {
        inherit pname version;
        sha256 = "1a7ym34ynhk5gb3yc5v4qkmkrkyjbv1fgisrsk0c9xay66w7nwz9";
      };

      propagatedBuildInputs = [
        pytorch-180
        numpy
        scipy
        tqdm
        networkx
        scikit-learn
        requests
        pandas
        rdflib
        jinja2
        numba
        ase
        h5py
        python-louvain
        googledrivedownloader
      ];
      nativeBuildInputs = [ pytest-runner ];

      doCheck = false;

      # postInstall = ''
      #   rm -rf $out/${python.sitePackages}/test
      # '';
    };
  python-with-pkgs = python.withPackages
    (ps: with ps; [ pytorch-180 scatter sparse cluster spline geometric ps ]);
in pkgs.mkShell { buildInputs = [ python-with-pkgs ]; }
User contributions licensed under: CC BY-SA
1 People found this is helpful
Advertisement