I have a .df
that looks something like this(df = pandas.read_csv(main_db)
):
itemName | itemBrand | itemCode | itemStock |
---|---|---|---|
some name | some brand | a 6 digit number | some low number |
even more names | even more brands | nore 6-digit numbers | more stocks |
Looks like that but with actual names and brands.
Now if I use result = df[df['itemCode']==itemCode]
, I get:
blank | itemName | itemBrand | itemCode | itemStock |
---|---|---|---|---|
6 | itemname7 | itembrand7 | 905616 | 13 |
It’s very good. I spend too damn long looking for this. Now, I’m looking to get only the itemStock
(In this case 13) to use somewhere else. So here I use result2 = result['itemStock']
.
6 | 13 |
---|
Name: itemStock, dtype: int64
Hm. okay, not what I wanted. What can I do to get only 13
?
Advertisement
Answer
If you use:
result2 = result['itemStock']
it returns you a data series so you see also the index and not only the value you want. You can check it using
type(result2)
You can find what you want using .values attribute
result2 = result['itemStock'].values