In a dataset like the one below, I’m trying to group the rows by attr_1 and attr_2, and if the sum of the count column exceeds a threshold (in this case 100), I want to keep the original rows.
| account | attr_1 | attr_2 | count |
|---|---|---|---|
| ABC | X1 | Y1 | 25 |
| DEF | X1 | Y1 | 100 |
| ABC | X2 | Y2 | 150 |
| DEF | X2 | Y2 | 0 |
| ABC | X3 | Y3 | 10 |
| DEF | X3 | Y3 | 15 |
I am using the messy approach below, but I’d like to see if there is a cleaner way that I could handle this.
df = pd.DataFrame({'account': ['ABC', 'DEF','ABC', 'DEF','ABC', 'DEF'],
'attr_1': ['X1', 'X1', 'X2', 'X2', 'X3', 'X3'],
'attr_2': ['Y1', 'Y1', 'Y2', 'Y2', 'Y3', 'Y3'],
'count': [25, 100, 150, 0, 10, 15]
})
min_count = 100
groups = df.groupby(by=['attr_1', 'attr_2']).sum()
group_count = groups.apply(lambda g: g[g >= min_count])
# find indices of groups exceed the threshold
keep_index = []
for ix in group_count.index:
keep_index.extend(df.query(f'attr_1=="{ix[0]}" & attr_2=="{ix[1]}"').index.values)
# filter dataframe
output_df = df[df.index.isin(keep_index)]
Advertisement
Answer
You can use groupby + filter, and in the filter lambda, provides a scalar condition for the group:
df.groupby(['attr_1', 'attr_2']).filter(lambda g: g['count'].sum() >= min_count) account attr_1 attr_2 count 0 ABC X1 Y1 25 1 DEF X1 Y1 100 2 ABC X2 Y2 150 3 DEF X2 Y2 0
Or use groupby + transform to create a filter condition that’s compatible with the original data frame:
df[df.groupby(['attr_1', 'attr_2'])['count'].transform('sum').ge(min_count)]
account attr_1 attr_2 count
0 ABC X1 Y1 25
1 DEF X1 Y1 100
2 ABC X2 Y2 150
3 DEF X2 Y2 0