Would love to know how to optimize this code without using for-loops, if it’s possible. What I’m trying to do is to categorize all the values in series df[‘Состояние’] looking at key words in lists list_rep and list_dem one by one. Thank you!
conditions = ['a','b']
list_rep = ['a1','a2']
list_dem = ['b1','b2']
for i in list_rep:
df['Состояние'] = [conditions[0] if i in str(x).lower() else x for x in df['Состояние']]
for i in list_exp:
df['Состояние'] = [conditions[1] if i in str(x).lower() else x for x in df['Состояние']]
for i in conditions:
df['Состояние'] = [i if i in str(x).lower() else x for x in df['Состояние']]
df['Состояние'] = [x if x in conditions else '-' for x in df['Состояние']]
Advertisement
Answer
Use Series.str.lower fiirst, then Series.str.contains with join by | for regex OR and set new values in numpy.select, then use Series.str.extract and replace missing values:
df = pd.DataFrame({'Состояние':['abc','def','opa1','ujb2','a1sb1d','B21op']})
print (df)
Состояние
0 abc
1 def
2 opa1
3 ujb2
4 a1sb1d
5 B21op
conditions = ['a','b']
list_rep = ['a1','a2']
list_dem = ['b1','b2']
s = df['Состояние'].str.lower()
m1 = s.str.contains('|'.join(list_rep))
m2 = s.str.contains('|'.join(list_dem))
df['Состояние'] = np.select([m1, m2], [conditions[0], conditions[1]], s)
df['Состояние'] = df['Состояние'].str.extract(f'({"|".join(conditions)})').fillna('-')
print (df)
Состояние
0 a
1 -
2 a
3 b
4 a
5 b
Another idea is create dictionary for mapping, first use Series.str.lower and Series.str.extract, then Series.map and last replace missing values:
conditions = ['a','b']
list_rep = ['a1','a2']
list_dem = ['b1','b2']
d = {**dict.fromkeys(list_rep,conditions[0]),
**dict.fromkeys(list_dem,conditions[1]),
**dict(zip(conditions,conditions))}
print (d)
{'a1': 'a', 'a2': 'a', 'b1': 'b', 'b2': 'b', 'a': 'a', 'b': 'b'}
pat = rf'({"|".join(d.keys())})'
df['Состояние'] = (df['Состояние'].str.lower()
.str.extract(pat, expand=False)
.map(d)
.fillna('-'))
print (df)
Состояние
0 a
1 -
2 a
3 b
4 a
5 b