Given a df
JavaScript
x
11
11
1
4,2019-01-15 07:00:00
2
0,2019-01-15 07:00:05
3
3,2019-01-15 07:00:10
4
3,2019-01-15 07:00:15
5
3,2019-01-15 07:00:20
6
1,2019-01-16 10:00:00
7
3,2019-01-16 10:00:05
8
2,2019-01-16 10:00:10
9
4,2019-01-16 10:00:15
10
0,2019-01-16 10:00:20
11
I would like to calculate the time diffrence between the first row and the subsequent rows under the column time
and express the result in the unit of seconds.
JavaScript
1
2
1
df['elapse_second']=pd.Timedelta(df['time'] - df.loc[0,'time']).seconds / 3600.0
2
However the compiler return an error
JavaScript
1
2
1
ValueError: Value must be Timedelta, string, integer, float, timedelta or convertible, not Series
2
The code to reproduce the above error is
JavaScript
1
20
20
1
import pandas as pd
2
import numpy as np
3
4
np.random.seed(0)
5
6
np.random.seed(0)
7
data_time=['2019-01-15 7:00:00','2019-01-16 7:00:00']
8
lapse=5 # unit in second
9
alist=[pd.DataFrame(np.random.randint(5,size=(5)),columns=['data']) for _ in range (2)]
10
all_df=[]
11
for disdf,ndata_time in zip(alist,data_time):
12
disdf['time']=pd.date_range(start=ndata_time, periods=len(disdf), freq='5S')
13
all_df.append(disdf)
14
15
df=pd.concat(all_df).reset_index(drop=True)
16
17
# t1 = pd.to_datetime('2019-01-15 7:00:00')
18
t1=df.loc[0,'time']
19
df['elapse_second']=pd.Timedelta(df['time'] - df.loc[0,'time']).seconds / 3600.0
20
Expected output
JavaScript
1
11
11
1
4,2019-01-15 07:00:00,0
2
0,2019-01-15 07:00:05,5
3
3,2019-01-15 07:00:10,10
4
3,2019-01-15 07:00:15,15
5
3,2019-01-15 07:00:20,20
6
1,2019-01-16 10:00:00,86400
7
3,2019-01-16 10:00:05,86405
8
2,2019-01-16 10:00:10,86410
9
4,2019-01-16 10:00:15,86415
10
0,2019-01-16 10:00:20,86420
11
Advertisement
Answer
You need to change the dtype to 'timedelta64[s]'
since you want the difference in seconds.
Replace
JavaScript
1
2
1
df['elapse_second']=pd.Timedelta(df['time'] - df.loc[0,'time']).seconds / 3600.0
2
with
JavaScript
1
2
1
df['elapse_second']=(df['time'] - df.loc[0,'time']).astype('timedelta64[s]')
2
and your code will produce the expected outcome.
Output:
JavaScript
1
12
12
1
data time elapse_second
2
0 4 2019-01-15 07:00:00 0.0
3
1 0 2019-01-15 07:00:05 5.0
4
2 3 2019-01-15 07:00:10 10.0
5
3 3 2019-01-15 07:00:15 15.0
6
4 3 2019-01-15 07:00:20 20.0
7
5 1 2019-01-16 07:00:00 86400.0
8
6 3 2019-01-16 07:00:05 86405.0
9
7 2 2019-01-16 07:00:10 86410.0
10
8 4 2019-01-16 07:00:15 86415.0
11
9 0 2019-01-16 07:00:20 86420.0
12