I am trying to scrape historical data from a table in coinmarketcap. However, the code that I run gives back “no data.” I thought it would be fairly easy, but not sure what I am missing.
url = "https://coinmarketcap.com/currencies/bitcoin/historical-data/" data = requests.get(url) bs=BeautifulSoup(data.text, "lxml") table_body=bs.find('tbody') rows = table_body.find_all('tr') for row in rows: cols=row.find_all('td') cols=[x.text.strip() for x in cols] print(cols)
Output:
C:UsersEjeranaconda3envspythonProjectpython.exe C:/Users/Ejer/PycharmProjects/pythonProject/CloudSQL_test.py ['No Data'] Process finished with exit code 0
Advertisement
Answer
You don’t need to scrape the data, you can get
request it:
import time import requests def get_timestamp(datetime: str): return int(time.mktime(time.strptime(datetime, '%Y-%m-%d %H:%M:%S'))) def get_btc_quotes(start_date: str, end_date: str): start = get_timestamp(start_date) end = get_timestamp(end_date) url = f'https://web-api.coinmarketcap.com/v1/cryptocurrency/ohlcv/historical?id=1&convert=USD&time_start={start}&time_end={end}' return requests.get(url).json() data = get_btc_quotes(start_date='2020-12-01 00:00:00', end_date='2020-12-10 00:00:00') import pandas as pd # making A LOT of assumptions here, hopefully the keys don't change in the future data_flat = [quote['quote']['USD'] for quote in data['data']['quotes']] df = pd.DataFrame(data_flat) print(df)
Output:
open high low close volume market_cap timestamp 0 18801.743593 19308.330663 18347.717838 19201.091157 3.738770e+10 3.563810e+11 2020-12-02T23:59:59.999Z 1 19205.925404 19566.191884 18925.784434 19445.398480 3.193032e+10 3.609339e+11 2020-12-03T23:59:59.999Z 2 19446.966422 19511.404714 18697.192914 18699.765613 3.387239e+10 3.471114e+11 2020-12-04T23:59:59.999Z 3 18698.385279 19160.449265 18590.193675 19154.231131 2.724246e+10 3.555639e+11 2020-12-05T23:59:59.999Z 4 19154.180593 19390.499895 18897.894072 19345.120959 2.529378e+10 3.591235e+11 2020-12-06T23:59:59.999Z 5 19343.128798 19411.827676 18931.142919 19191.631287 2.689636e+10 3.562932e+11 2020-12-07T23:59:59.999Z 6 19191.529463 19283.478339 18269.945444 18321.144916 3.169229e+10 3.401488e+11 2020-12-08T23:59:59.999Z 7 18320.884784 18626.292652 17935.547820 18553.915377 3.442037e+10 3.444865e+11 2020-12-09T23:59:59.999Z 8 18553.299728 18553.299728 17957.065213 18264.992107 2.554713e+10 3.391369e+11 2020-12-10T23:59:59.999Z