I’m trying to return the highest frequency trigram in a new column in a pandas dataframe for each group of keywords. (Essentially something like a groupby with transform, returning the highest trigram in a new column).
An example dataframe with dummy data
cluster_name keyword 0 summer summer dresses size 10 1 summer summer dresses size 12 2 summer large summer dresses 3 summer summer dresses size 14 4 strappy ladies strappy summer dresses 5 strappy strappy summer dresses uk 2022 6 strappy strappy summer dress 7 strappy strappy summer dresses 8 strappy thin strap summer dresses
Desired Output
cluster_name trigram 0 summer summer dresses size 4 strappy strappy summer dresses
Minimum Reproducible Example
import pandas as pd
data = [
    ["summer", "summer dresses size 10"],
    ["summer", "summer dresses size 12"],
    ["summer", "large summer dresses"],
    ["summer", "summer dresses size 14"],
    ["strappy", "ladies strappy summer dresses"],
    ["strappy", "strappy summer dresses uk 2022"],
    ["strappy", "strappy summer dress"],
    ["strappy", "strappy summer dresses"],
    ["strappy", "thin strap summer dresses"],
]
df = pd.DataFrame(data, columns=['cluster_name', 'keyword'])
print(df)
What I’ve tried.
I have working code to find bigrams but it’s a bit hacky. It is fast though (much faster than iterows, which I’d be keen to avoid). It was taken from this solution: How to get group-by and get most frequent words and bigrams for each group pandas
The ideal outcome would be a universal solution I could tinker slightly to return unigrams, bigrams or trigrams etc just by changing a single value.
def bigram(row):
    lst = row['keyword'].split(' ')
    return bigrams.append([(lst[x].strip(), lst[x+1].strip()) for x in range(len(lst)-1)])
df['parent_cluster'] = df.apply(lambda row: bigram(row), axis=1)
df2 = df.groupby('cluster_name').agg({'parent_cluster': 'sum'})
df3 = df2.parent_cluster.apply(lambda row: Counter(row)).to_frame().astype(str)
df3["parent_cluster"] = (df3["parent_cluster"].str.split(',').str[0])
# clean up the unigram column to remove the string of the Counter library.
df3["parent_cluster"] = df3["parent_cluster"].str.replace("Counter({('", '')
df3["parent_cluster"] = df3["parent_cluster"].str.replace("'", '')
Advertisement
Answer
You can use nltk.ngrams combined with explode/groupby/mode:
from nltk import ngrams  # or use a custom function
out = (df
 .assign(keyword=[list(ngrams(s.split(), n=3)) for s in df['keyword']])
 .explode('keyword')
 .groupby('cluster_name')['keyword'].apply(lambda g: g.mode()[0])
)
output:
cluster_name strappy (strappy, summer, dresses) summer (summer, dresses, size) Name: keyword, dtype: object
As strings:
out = (df
 .assign(keyword=[[' '.join(x) for x in ngrams(s.split(), n=3)]
                   for s in df['keyword']])
 .explode('keyword')
 .groupby('cluster_name')['keyword'].apply(lambda g: g.mode()[0])
 .reset_index(name='trigram')
)
output:
cluster_name trigram 0 strappy strappy summer dresses 1 summer summer dresses size