Let’s say I have the following data set:
import pandas as pd
df = pd.DataFrame(
{'A': [1, 2, 3],
'B': ['one', 2, 3],
'C': [4, 5, '6Y']
})
I would like to find out – without any cumbersome for loop – which columns contain at least one case with an alphabetical letter (here: B and C). I guess the result should either be a list of booleans or indices.
Thank you for your help!
Advertisement
Answer
As a quick and simple solution, you can use replace and filter:
df.replace('(?i)[a-z]', '', regex=True).ne(df).any()
A False
B True
C True
dtype: bool
df.columns[df.replace('(?i)[a-z]', '', regex=True).ne(df).any()]
# Index(['B', 'C'], dtype='object')
Another option is applying str.contains column-wise:
mask = df.astype(str).apply(
lambda x: x.str.contains(r'[a-z]', flags=re.IGNORECASE)).any()
mask
A False
B True
C True
dtype: bool
df.columns[mask]
# Index(['B', 'C'], dtype='object')