Let’s say I have the following data set:
import pandas as pd df = pd.DataFrame( {'A': [1, 2, 3], 'B': ['one', 2, 3], 'C': [4, 5, '6Y'] })
I would like to find out – without any cumbersome for loop – which columns contain at least one case with an alphabetical letter (here: B
and C
). I guess the result should either be a list of booleans or indices.
Thank you for your help!
Advertisement
Answer
As a quick and simple solution, you can use replace
and filter:
df.replace('(?i)[a-z]', '', regex=True).ne(df).any() A False B True C True dtype: bool df.columns[df.replace('(?i)[a-z]', '', regex=True).ne(df).any()] # Index(['B', 'C'], dtype='object')
Another option is applying str.contains
column-wise:
mask = df.astype(str).apply( lambda x: x.str.contains(r'[a-z]', flags=re.IGNORECASE)).any() mask A False B True C True dtype: bool df.columns[mask] # Index(['B', 'C'], dtype='object')