Filter Pyspark dataframe column with None value

Tags: , , , ,



I’m trying to filter a PySpark dataframe that has None as a row value:

df.select('dt_mvmt').distinct().collect()

[Row(dt_mvmt=u'2016-03-27'),
 Row(dt_mvmt=u'2016-03-28'),
 Row(dt_mvmt=u'2016-03-29'),
 Row(dt_mvmt=None),
 Row(dt_mvmt=u'2016-03-30'),
 Row(dt_mvmt=u'2016-03-31')]

and I can filter correctly with an string value:

df[df.dt_mvmt == '2016-03-31']
# some results here

but this fails:

df[df.dt_mvmt == None].count()
0
df[df.dt_mvmt != None].count()
0

But there are definitely values on each category. What’s going on?

Answer

You can use Column.isNull / Column.isNotNull:

df.where(col("dt_mvmt").isNull())

df.where(col("dt_mvmt").isNotNull())

If you want to simply drop NULL values you can use na.drop with subset argument:

df.na.drop(subset=["dt_mvmt"])

Equality based comparisons with NULL won’t work because in SQL NULL is undefined so any attempt to compare it with another value returns NULL:

sqlContext.sql("SELECT NULL = NULL").show()
## +-------------+
## |(NULL = NULL)|
## +-------------+
## |         null|
## +-------------+


sqlContext.sql("SELECT NULL != NULL").show()
## +-------------------+
## |(NOT (NULL = NULL))|
## +-------------------+
## |               null|
## +-------------------+

The only valid method to compare value with NULL is IS / IS NOT which are equivalent to the isNull / isNotNull method calls.



Source: stackoverflow