input dict
JavaScript
x
2
1
{'basename_AM1.csv': ['AM1286', 'AM1287', 'AM1288']}
2
I have large csv files in the below format basename_AM1.csv I have large csv files in the below format
basename_AM1.csv
JavaScript
1
7
1
ID1 ID2 Score
2
0 AM1287 AM1286 97.55
3
1 AM1288 AM1286 78.91
4
2 AM1289 AM1286 95.38
5
3 AM1290 AM1286 94.83
6
4 AM1291 AM1286 82.91
7
Now I need to create a similarity dict like below for the given input_dict by searching/filter the csv files
JavaScript
1
4
1
{'AM1286': {'AM1286': 0, 'AM287': 97.55, 'AM288': 78.91},
2
'AM1287': {'AM1286': 97.55, 'AM1287': 100.0, 'AM1288': 78.91},
3
'AM1288': {'AM1286': 78.91, 'AM1287': 78.91, 'AM1288': 100.0}}
4
I have come up with the below logic but for an input_dict of 100 samples this takes too long, Can someone please suggest the optimized and fastest way to achieve this
JavaScript
1
11
11
1
for key,value in input_dict.items():
2
base_name_df = pd.read_csv('csv_file_path')
3
base_name_df.columns = "ID1","ID2","Score"
4
if os.path.exists('csv_file_path'):
5
for id1 in range(len(value)):
6
for id2 in range(len(value)):
7
scan_df = base_name_df[(base_name_df['ID1'] == value[id1]) & (base_name_df['ID2'] == value[id2])]
8
if not scan_df.empty:
9
scan_df = scan_df.groupby(['LIMSID1','LIMSID2'], as_index=False)['Score'].max()
10
final_dict[value[id1]][value[id2]] = scan_df.iloc[0]['Score']
11
Advertisement
Answer
IIUC, you can use:
JavaScript
1
10
10
1
input_dict = {'basename_AM1.csv': ['AM1286', 'AM1287', 'AM1288']}
2
3
import pandas as pd
4
for fname, lst in input_dict.items():
5
df = pd.read_csv(fname, sep='s+', names=['ID1', 'ID2', 'score'])
6
df2 = df.pivot('ID1', 'ID2', 'score').reindex(index=lst, columns=lst)
7
df2 = df2.combine_first(df2.T).fillna(0)
8
# print for example
9
print(df2.to_dict())
10
If you want 100 on the diagonal:
JavaScript
1
5
1
import numpy as np
2
a = df2.to_numpy()
3
np.fill_diagonal(a, 100)
4
df2 = pd.DataFrame(a, index=lst, columns=lst)
5
output:
JavaScript
1
5
1
{'AM1286': {'AM1286': 0.0, 'AM1287': 97.55, 'AM1288': 78.91},
2
'AM1287': {'AM1286': 97.55, 'AM1287': 0.0, 'AM1288': 0.0},
3
'AM1288': {'AM1286': 78.91, 'AM1287': 0.0, 'AM1288': 0.0}}
4
5