I have a set of large arrays (about 6 million elements each) that I want to basically perform a np.digitize but over multiple axes. I am looking for some suggestions on both how to effectively do this but also on how to store the results.
I need all the indices (or all the values, or a mask) of array A where the values of array B are in a range and the values of array C are in another range and D in yet another. I want either the values, indices, or mask so that I can do some as of yet undecided statistics on the values of the A array in each bin. I will also need the number of elements in each bin but len()
can do that.
Here is one example I worked up that seems reasonable:
import itertools
import numpy as np
A = np.random.random_sample(1e4)
B = (np.random.random_sample(1e4) + 10)*20
C = (np.random.random_sample(1e4) + 20)*40
D = (np.random.random_sample(1e4) + 80)*80
# make the edges of the bins
Bbins = np.linspace(B.min(), B.max(), 10)
Cbins = np.linspace(C.min(), C.max(), 12) # note different number
Dbins = np.linspace(D.min(), D.max(), 24) # note different number
B_Bidx = np.digitize(B, Bbins)
C_Cidx = np.digitize(C, Cbins)
D_Didx = np.digitize(D, Dbins)
a_bins = []
for bb, cc, dd in itertools.product(np.unique(B_Bidx),
np.unique(C_Cidx),
np.unique(D_Didx)):
a_bins.append([(bb, cc, dd), [A[np.bitwise_and((B_Bidx==bb),
(C_Cidx==cc),
(D_Didx==dd))]]])
This however makes me nervous that I will run out of memory on large arrays.
I could also do it this way:
b_inds = np.empty((len(A), 10), dtype=np.bool)
c_inds = np.empty((len(A), 12), dtype=np.bool)
d_inds = np.empty((len(A), 24), dtype=np.bool)
for i in range(10):
b_inds[:,i] = B_Bidx = i
for i in range(12):
c_inds[:,i] = C_Cidx = i
for i in range(24):
d_inds[:,i] = D_Didx = i
# get the A data for the 1,2,3 B,C,D bin
print A[b_inds[:,1] & c_inds[:,2] & d_inds[:,3]]
At least here the output is of known and constant size.
Does anyone have any better thoughts on how to do this smarter? Or clarification that is needed?
Based on the answer by HYRY this is the path I decided to take.
import numpy as np
import pandas as pd
np.random.seed(42)
A = np.random.random_sample(1e7)
B = (np.random.random_sample(1e7) + 10)*20
C = (np.random.random_sample(1e7) + 20)*40
D = (np.random.random_sample(1e7) + 80)*80
# make the edges of the bins we want
Bbins = np.linspace(B.min(), B.max(), 9)
Cbins = np.linspace(C.min(), C.max(), 10) # note different number
Dbins = np.linspace(D.min(), D.max(), 11) # note different number
sA = pd.Series(A)
cB = pd.cut(B, Bbins, include_lowest=True)
cC = pd.cut(C, Cbins, include_lowest=True)
cD = pd.cut(D, Dbins, include_lowest=True)
dat = pd.DataFrame({'A':A, 'cB':cB.labels, 'cC':cC.labels, 'cD':cD.labels})
g = sA.groupby([cB.labels, cC.labels, cD.labels]).indices
# this then gives all the indices that match the group
print g[0,1,2]
# this is all the array A data for that B,C,D bin
print sA[g[0,1,2]]
This method seems lightning fast even for huge arrays.
Advertisement
Answer
How about use groupby
in Pandas. Fix some problem in your code first:
import itertools
import numpy as np
np.random.seed(42)
A = np.random.random_sample(1e4)
B = (np.random.random_sample(1e4) + 10)*20
C = (np.random.random_sample(1e4) + 20)*40
D = (np.random.random_sample(1e4) + 80)*80
# make the edges of the bins
Bbins = np.linspace(B.min(), B.max(), 10)
Cbins = np.linspace(C.min(), C.max(), 12) # note different number
Dbins = np.linspace(D.min(), D.max(), 24) # note different number
B_Bidx = np.digitize(B, Bbins)
C_Cidx = np.digitize(C, Cbins)
D_Didx = np.digitize(D, Dbins)
a_bins = []
for bb, cc, dd in itertools.product(np.unique(B_Bidx),
np.unique(C_Cidx),
np.unique(D_Didx)):
a_bins.append([(bb, cc, dd), A[(B_Bidx==bb) & (C_Cidx==cc) & (D_Didx==dd)]])
a_bins[1000]
output:
[(4, 6, 17), array([ 0.70723863, 0.907611 , 0.46214047])]
Here is the code that return the same result by Pandas:
import pandas as pd
cB = pd.cut(B, 9)
cC = pd.cut(C, 11)
cD = pd.cut(D, 23)
sA = pd.Series(A)
g = sA.groupby([cB.labels, cC.labels, cD.labels])
g.get_group((3, 5, 16))
output:
800 0.707239
2320 0.907611
9388 0.462140
dtype: float64
If you want to calculate some statistics of every group, you can call the method of g
, for example:
g.mean()
returns:
0 0 0 0.343566
1 0.410979
2 0.700007
3 0.189936
4 0.452566
5 0.565330
6 0.539565
7 0.530867
8 0.568120
9 0.587762
11 0.352453
12 0.484903
13 0.477969
14 0.484328
15 0.467357
8 10 8 0.559859
9 0.570652
10 0.656718
11 0.353938
12 0.628980
13 0.372350
14 0.404543
15 0.387920
16 0.742292
17 0.530866
18 0.389236
19 0.628461
20 0.387384
21 0.541831
22 0.573023
Length: 2250, dtype: float64