I want to create VAE(variational autoencoder). During model creating it throws exception.
When subclassing the Model
class, you should implement a call
method.
I am using Tensorflow 2.0
def vae(): models ={} def apply_bn_and_dropout(x): return l.Dropout(dropout_rate)(l.BatchNormalization()(x)) input_image = l.Input(batch_shape=(batch_size,28,28,1)) x = l.Flatten()(input_image) x = l.Dense(256,activation="relu")(x) x = apply_bn_and_dropout(x) x = l.Dense(128,activation="relu")(x) x = apply_bn_and_dropout(x) z_mean = l.Dense(latent_dim)(x) z_log_var = l.Dense(latent_dim)(x) def sampling(args): z_mean, z_log_var = args epsilon = K.random_normal(shape=(batch_size,latent_dim),mean=0., stddev=1.0) return z_mean + K.exp(z_log_var/2) * epsilon lambda_layer = l.Lambda(sampling,output_shape=(latent_dim,))([z_mean,z_log_var]) models["encoder"] = Model(input_image,lambda_layer,"Encoder") models["z_meaner"] = Model(input_image,z_mean,"Enc_z_mean") models["z_lvarer"] = Model(input_image, z_log_var,"Enc_z_log_var") z = l.Input(shape=(latent_dim,)) x = l.Dense(128)(z) x = l.LeakyReLU()(x) x = apply_bn_and_dropout(x) x = l.Dense(256)(x) x = l.LeakyReLU()(x) x = apply_bn_and_dropout(x) x = l.Dense(28*28,activation="sigmoid")(x) decoded = l.Reshape((28,28,1))(x) models["decoder"] = Model(z,decoded,name="Decoder") models["vae"] = Model(input_image, models["decoder"](models["encoder"](input_image)), name="VAE") def vae_loss(x,decoded): x = K.reshape(x,shape=(batch_size,28*28)) decoded = K.reshape(decoded,shape=(batch_size,28*28)) xent_loss = 28*28*binary_crossentropy(x, decoded) kl_loss = -0.5 * K.sum(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1) return (xent_loss + kl_loss)/2/28/28 return models, vae_loss --------------------------------------------------------------------------- NotImplementedError Traceback (most recent call last) <ipython-input-34-186b31069dc3> in <module> ----> 1 models, vae_loss = vae() 2 vae = models["vae"] <ipython-input-33-0fa06b39e41c> in vae() 36 37 models["decoder"] = Model(z,decoded,name="Decoder") ---> 38 models["vae"] = Model(input_image, models["decoder"](models["encoder"](input_image)), name="VAE") 39 40 def vae_loss(x,decoded): ~AppDataLocalContinuumanaconda3libsite-packagestensorflowpythonkerasenginebase_layer.py in __call__(self, inputs, *args, **kwargs) 610 base_layer_utils.AutoAddUpdates(self, 611 inputs)) as auto_updater: --> 612 outputs = self.call(inputs, *args, **kwargs) 613 auto_updater.set_outputs(outputs) 614 ~AppDataLocalContinuumanaconda3libsite-packagestensorflowpythonkerasenginenetwork.py in call(self, inputs, training, mask) 865 """ 866 if not self._is_graph_network: --> 867 raise NotImplementedError('When subclassing the `Model` class, you should' 868 ' implement a `call` method.') 869 NotImplementedError: When subclassing the `Model` class, you should implement a `call` method.
Models with names
def create_dense_ae(): encoding_dim = 64 input_img = layers.Input(shape=(28, 28, 1)) flat_img = layers.Flatten()(input_img) encoded = layers.Dense(encoding_dim, activation='relu')(flat_img) input_encoded = layers.Input(shape=(encoding_dim,)) flat_decoded = layers.Dense(28*28, activation='sigmoid')(input_encoded) decoded = layers.Reshape((28, 28, 1))(flat_decoded) encoder = tf.keras.Model(input_img, encoded, name="encoder") decoder = tf.keras.Model(input_encoded, decoded, name="decoder") autoencoder = tf.keras.Model(input_img, decoder(encoder(input_img)), name="autoencoder") return encoder, decoder, autoencoder
I want to get model.
Advertisement
Answer
The problem is here:
models["encoder"] = Model(input_image,lambda_layer,"Encoder") models["z_meaner"] = Model(input_image,z_mean,"Enc_z_mean") models["z_lvarer"] = Model(input_image, z_log_var,"Enc_z_log_var")
You are passing three arguments to the construction, where only two are needed (inputs and outputs). Models do not have names. The problem is that three parameters will break the detection of network or sub-classed model as shown in the keras source code.
So just replace the code with:
models["encoder"] = Model(input_image,lambda_layer) models["z_meaner"] = Model(input_image,z_mean) models["z_lvarer"] = Model(input_image, z_log_var)