How can I drop rows in a tensor if the sum of the elements in each row is lower than the threshold -1? For example:
tensor = tf.random.normal((3, 3)) tf.Tensor( [[ 0.506158 0.53865975 -0.40939444] [ 0.4917719 -0.1575156 1.2308844 ] [ 0.08580616 -1.1503975 -2.252681 ]], shape=(3, 3), dtype=float32)
Since the sum of the last row is smaller than -1, I need to remove it and get the tensor (2, 3):
tf.Tensor( [[ 0.506158 0.53865975 -0.40939444] [ 0.4917719 -0.1575156 1.2308844 ]], shape=(2, 3), dtype=float32)
I know how to use tf.reduce_sum, but I do not know how to delete rows from a tensor. Something like df.drop
would be nice.
Advertisement
Answer
tf.boolean_mask
is all you need.
tensor = tf.constant([ [ 0.506158, 0.53865975, -0.40939444], [ 0.4917719, -0.1575156, 1.2308844 ], [ 0.08580616, -1.1503975, -2.252681 ], ]) mask = tf.reduce_sum(tensor, axis=1) > -1 # <tf.Tensor: shape=(3,), dtype=bool, numpy=array([ True, True, False])> tf.boolean_mask( tensor=tensor, mask=mask, axis=0 ) # <tf.Tensor: shape=(2, 3), dtype=float32, numpy= # array([[ 0.506158 , 0.53865975, -0.40939444], # [ 0.4917719 , -0.1575156 , 1.2308844 ]], dtype=float32)>