Starting from a DataFrame with a date
and user
column, I’d like to add a third count_past_5_days
column to indicate the rolling count of occurrences of each row’s user during the past 5 days:
date | user | count_past_5_days |
---|---|---|
2020-01-01 | abc | 1 |
2020-01-01 | def | 1 |
2020-01-02 | abc | 2 |
2020-01-03 | abc | 3 |
2020-01-04 | abc | 4 |
2020-01-04 | def | 2 |
2020-01-04 | ghi | 1 |
2020-01-05 | abc | 5 |
2020-01-06 | abc | 5 |
2020-01-07 | abc | 5 |
I’ve tried the following:
df.set_index('date').rolling('5D')['user'].count()
But this gets the total count for the past five rolling days, not just for the specific user of the current row. How to get this rolling count, for each row’s specific user only?
Advertisement
Answer
Try this, you can chain rolling
on groupby
:
df.set_index('date').groupby('user')['user'] .rolling('5D') .count() .rename('count_past_5_days') .reset_index() .sort_values('date')
Output:
user date count_past_5_days 0 abc 2020-01-01 1.0 1 def 2020-01-01 1.0 2 abc 2020-01-02 2.0 3 abc 2020-01-03 3.0 4 abc 2020-01-04 4.0 5 def 2020-01-04 2.0 6 ghi 2020-01-04 1.0 7 abc 2020-01-05 5.0 8 abc 2020-01-06 5.0 9 abc 2020-01-07 5.0