Skip to content
Advertisement

Dataframe: shifting values over columns

I have a dataframe with some NaN values in my s_x columns. If NaN values exist in them, I want them to be in the last columns.

Example: Given values in the s_x columns of [Nan, 1, Nan, 2] I want the values to shift left over the columns to result in [1, 2, NaN, NaN]

Example 2:

Example DF

My current solution is very slow as I:

  • iterate over the rows
  • transform the s_x values into a list
  • remove NaN values
  • left-pad the list with NaN values
  • write it back into the dataframe

How can I improve on the function below? The order of values (low to high) needs to remain the same. Every value is found only once in the s_x columns of a row.

I know that “leaving the pandas-logic” by parsing to a list and back is problematic concerning performance and was thinking of trying to do it with a lambda function, but didn’t get anywhere with it.

My current code as a minimal working example:

import pandas as pd
import numpy as np

def shift_values(df, leading_chars):
    """Shifts all values in columns with common leading chars to the left if there are NaN values.
    
    Example:   Given a row of [NaN, 1, NaN, 2]
    the values are shifted to [1, 2, NaN, NaN]
    
    """
    cols = [c for c in list(df.columns) if c[:len(leading_chars)] == leading_chars] 

    for index, row in df.iterrows():
        # create list without NaN values
        values = [v for v in row[cols] if not pd.isna(v)] 
        # pad with NaN to get correct number of values again
        values += [np.nan] * (len(cols) - len(values))  

        # overwrite row values with modified list
        for i, c in enumerate(cols): 
            row[c] = values[i]

        # overwrite row in the dataframe
        df.iloc[index] = row

    return df 

mylist = [["key", "s_1", "s_2", "s_3", "s_4"],
          [1, np.nan, 1, 2, np.nan],
          [1, 10, 20, 25, np.nan],
          [1, 10, np.nan, 25, np.nan]
         ]
df = pd.DataFrame(mylist[1:], columns=mylist[0])

print("______ PREVIOUS ______")
print(df.head())

df = shift_values(df, 's_')
print("______ RESULT ______")
print(df.head())

Advertisement

Answer

Try:

df = df.transform(sorted, key=pd.isna, axis=1)
print(df)

Prints:

   key   s_1   s_2   s_3  s_4
0  1.0   1.0   2.0   NaN  NaN
1  1.0  10.0  20.0  25.0  NaN
2  1.0  10.0  25.0   NaN  NaN

EDIT: If columns are not next to each other:

x = df.filter(regex=r"^s_")

df.loc[:, x.columns] = df.loc[:, x.columns].transform(
    sorted, key=pd.isna, axis=1
)
print(df)
User contributions licensed under: CC BY-SA
9 People found this is helpful
Advertisement