I’m currently becoming more and more desperate concerning my tensorflow project. It took many hours installing tensorflow until I figured out that PyCharm, Python 3.7 and TF 2.x are somehow not compatible. Now it is running, but I get a really unspecific CuDNN error after many epochs of training. Do you know if my code is wrong or if there is e.g. an installation error? Could you please hint me a direction? I also didn’t find anything specific with searching.
My setup [in brackets what I also tried]:
- HW: i7-4790K, 32 GB RAM and GeForce 2070 Super 8GB
- OS: Windows 10 64bit
- Python: 3.6.8 [and 3.7 (where tf failed to install)]
- IDE: PyCharm 2020.1.1 [and 2020.1]
- Driver: Latest “Studio” driver 442.92 [and also latest “gaming” driver]
- CuDA: 10.1 + latest CuDNN dlls for this version [I also tried 10.2, but tf doesn’t detect it]
- TF: 2.2.0 RC4 [, 2.0.x and 2.1.5] All packages installed via PyCharm (and therefore pip)
This error occurs after ~3h of training. In other cases (or parametrisations of the net) the error occurs much earlier. Here you can see the full output of the code sniplet below:
C:UsersFhnx.virtualenvsProcessing-TA9ofq3qScriptspython.exe C:/Users/Fhnx/.../playground/AI_Predictor_Test.py 2020-05-08 11:47:25.924424: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_101.dll Starting training sweep with Epochs: 10000, LRstart: 0.01, LRend: 5e-05 2020-05-08 11:47:27.887135: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library nvcuda.dll 2020-05-08 11:47:27.912998: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1561] Found device 0 with properties: pciBusID: 0000:01:00.0 name: GeForce RTX 2070 SUPER computeCapability: 7.5 coreClock: 1.815GHz coreCount: 40 deviceMemorySize: 8.00GiB deviceMemoryBandwidth: 417.29GiB/s 2020-05-08 11:47:27.913212: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_101.dll 2020-05-08 11:47:27.921203: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_10.dll 2020-05-08 11:47:27.930115: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cufft64_10.dll 2020-05-08 11:47:27.932760: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library curand64_10.dll 2020-05-08 11:47:27.944938: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusolver64_10.dll 2020-05-08 11:47:27.952321: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusparse64_10.dll 2020-05-08 11:47:27.960042: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudnn64_7.dll 2020-05-08 11:47:27.960698: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1703] Adding visible gpu devices: 0 2020-05-08 11:47:27.961058: I tensorflow/core/platform/cpu_feature_guard.cc:143] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 2020-05-08 11:47:27.969636: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x2df4e1dcd00 initialized for platform Host (this does not guarantee that XLA will be used). Devices: 2020-05-08 11:47:27.969831: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version 2020-05-08 11:47:27.970579: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1561] Found device 0 with properties: pciBusID: 0000:01:00.0 name: GeForce RTX 2070 SUPER computeCapability: 7.5 coreClock: 1.815GHz coreCount: 40 deviceMemorySize: 8.00GiB deviceMemoryBandwidth: 417.29GiB/s 2020-05-08 11:47:27.970964: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_101.dll 2020-05-08 11:47:27.971208: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_10.dll 2020-05-08 11:47:27.971389: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cufft64_10.dll 2020-05-08 11:47:27.971602: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library curand64_10.dll 2020-05-08 11:47:27.971839: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusolver64_10.dll 2020-05-08 11:47:27.972112: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusparse64_10.dll 2020-05-08 11:47:27.972324: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudnn64_7.dll 2020-05-08 11:47:27.973322: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1703] Adding visible gpu devices: 0 2020-05-08 11:47:28.530960: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1102] Device interconnect StreamExecutor with strength 1 edge matrix: 2020-05-08 11:47:28.531109: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1108] 0 2020-05-08 11:47:28.531180: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1121] 0: N 2020-05-08 11:47:28.532337: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1247] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 6213 MB memory) -> physical GPU (device: 0, name: GeForce RTX 2070 SUPER, pci bus id: 0000:01:00.0, compute capability: 7.5) 2020-05-08 11:47:28.534819: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x2df7aeb31a0 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices: 2020-05-08 11:47:28.534946: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): GeForce RTX 2070 SUPER, Compute Capability 7.5 Model: "model" __________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== input_1 (InputLayer) [(None, 22)] 0 __________________________________________________________________________________________________ tf_op_layer_ExpandDims (TensorF [(None, 22, 1)] 0 input_1[0][0] __________________________________________________________________________________________________ dense (Dense) (None, 22, 64) 128 tf_op_layer_ExpandDims[0][0] __________________________________________________________________________________________________ dense_3 (Dense) (None, 22, 64) 128 tf_op_layer_ExpandDims[0][0] __________________________________________________________________________________________________ dense_6 (Dense) (None, 22, 64) 128 tf_op_layer_ExpandDims[0][0] __________________________________________________________________________________________________ dense_9 (Dense) (None, 22, 64) 128 tf_op_layer_ExpandDims[0][0] __________________________________________________________________________________________________ dense_12 (Dense) (None, 22, 64) 128 tf_op_layer_ExpandDims[0][0] __________________________________________________________________________________________________ dense_15 (Dense) (None, 22, 64) 128 tf_op_layer_ExpandDims[0][0] __________________________________________________________________________________________________ gaussian_dropout (GaussianDropo (None, 22, 64) 0 dense[0][0] __________________________________________________________________________________________________ gaussian_dropout_2 (GaussianDro (None, 22, 64) 0 dense_3[0][0] __________________________________________________________________________________________________ gaussian_dropout_4 (GaussianDro (None, 22, 64) 0 dense_6[0][0] __________________________________________________________________________________________________ gaussian_dropout_6 (GaussianDro (None, 22, 64) 0 dense_9[0][0] __________________________________________________________________________________________________ gaussian_dropout_8 (GaussianDro (None, 22, 64) 0 dense_12[0][0] __________________________________________________________________________________________________ gaussian_dropout_10 (GaussianDr (None, 22, 64) 0 dense_15[0][0] __________________________________________________________________________________________________ bidirectional (Bidirectional) (None, 22, 16) 4672 gaussian_dropout[0][0] __________________________________________________________________________________________________ bidirectional_2 (Bidirectional) (None, 22, 16) 4672 gaussian_dropout_2[0][0] __________________________________________________________________________________________________ bidirectional_4 (Bidirectional) (None, 22, 16) 4672 gaussian_dropout_4[0][0] __________________________________________________________________________________________________ bidirectional_6 (Bidirectional) (None, 22, 16) 4672 gaussian_dropout_6[0][0] __________________________________________________________________________________________________ bidirectional_8 (Bidirectional) (None, 22, 16) 4672 gaussian_dropout_8[0][0] __________________________________________________________________________________________________ bidirectional_10 (Bidirectional (None, 22, 16) 4672 gaussian_dropout_10[0][0] __________________________________________________________________________________________________ bidirectional_1 (Bidirectional) (None, 22, 16) 1600 bidirectional[0][0] __________________________________________________________________________________________________ bidirectional_3 (Bidirectional) (None, 22, 16) 1600 bidirectional_2[0][0] __________________________________________________________________________________________________ bidirectional_5 (Bidirectional) (None, 22, 16) 1600 bidirectional_4[0][0] __________________________________________________________________________________________________ bidirectional_7 (Bidirectional) (None, 22, 16) 1600 bidirectional_6[0][0] __________________________________________________________________________________________________ bidirectional_9 (Bidirectional) (None, 22, 16) 1600 bidirectional_8[0][0] __________________________________________________________________________________________________ bidirectional_11 (Bidirectional (None, 22, 16) 1600 bidirectional_10[0][0] __________________________________________________________________________________________________ conv1d (Conv1D) (None, 20, 13) 1780 bidirectional_1[0][0] __________________________________________________________________________________________________ conv1d_4 (Conv1D) (None, 20, 13) 1780 bidirectional_3[0][0] __________________________________________________________________________________________________ conv1d_8 (Conv1D) (None, 20, 13) 1780 bidirectional_5[0][0] __________________________________________________________________________________________________ conv1d_12 (Conv1D) (None, 20, 13) 1780 bidirectional_7[0][0] __________________________________________________________________________________________________ conv1d_16 (Conv1D) (None, 20, 13) 1780 bidirectional_9[0][0] __________________________________________________________________________________________________ conv1d_20 (Conv1D) (None, 20, 13) 1780 bidirectional_11[0][0] __________________________________________________________________________________________________ conv1d_1 (Conv1D) (None, 20, 10) 1620 conv1d[0][0] __________________________________________________________________________________________________ conv1d_5 (Conv1D) (None, 20, 10) 1620 conv1d_4[0][0] __________________________________________________________________________________________________ conv1d_9 (Conv1D) (None, 20, 10) 1620 conv1d_8[0][0] __________________________________________________________________________________________________ conv1d_13 (Conv1D) (None, 20, 10) 1620 conv1d_12[0][0] __________________________________________________________________________________________________ conv1d_17 (Conv1D) (None, 20, 10) 1620 conv1d_16[0][0] __________________________________________________________________________________________________ conv1d_21 (Conv1D) (None, 20, 10) 1620 conv1d_20[0][0] __________________________________________________________________________________________________ conv1d_2 (Conv1D) (None, 20, 7) 1620 conv1d_1[0][0] __________________________________________________________________________________________________ conv1d_6 (Conv1D) (None, 20, 7) 1620 conv1d_5[0][0] __________________________________________________________________________________________________ conv1d_10 (Conv1D) (None, 20, 7) 1620 conv1d_9[0][0] __________________________________________________________________________________________________ conv1d_14 (Conv1D) (None, 20, 7) 1620 conv1d_13[0][0] __________________________________________________________________________________________________ conv1d_18 (Conv1D) (None, 20, 7) 1620 conv1d_17[0][0] __________________________________________________________________________________________________ conv1d_22 (Conv1D) (None, 20, 7) 1620 conv1d_21[0][0] __________________________________________________________________________________________________ conv1d_3 (Conv1D) (None, 20, 4) 1620 conv1d_2[0][0] __________________________________________________________________________________________________ conv1d_7 (Conv1D) (None, 20, 4) 1620 conv1d_6[0][0] __________________________________________________________________________________________________ conv1d_11 (Conv1D) (None, 20, 4) 1620 conv1d_10[0][0] __________________________________________________________________________________________________ conv1d_15 (Conv1D) (None, 20, 4) 1620 conv1d_14[0][0] __________________________________________________________________________________________________ conv1d_19 (Conv1D) (None, 20, 4) 1620 conv1d_18[0][0] __________________________________________________________________________________________________ conv1d_23 (Conv1D) (None, 20, 4) 1620 conv1d_22[0][0] __________________________________________________________________________________________________ batch_normalization (BatchNorma (None, 20, 4) 16 conv1d_3[0][0] __________________________________________________________________________________________________ batch_normalization_1 (BatchNor (None, 20, 4) 16 conv1d_7[0][0] __________________________________________________________________________________________________ batch_normalization_2 (BatchNor (None, 20, 4) 16 conv1d_11[0][0] __________________________________________________________________________________________________ batch_normalization_3 (BatchNor (None, 20, 4) 16 conv1d_15[0][0] __________________________________________________________________________________________________ batch_normalization_4 (BatchNor (None, 20, 4) 16 conv1d_19[0][0] __________________________________________________________________________________________________ batch_normalization_5 (BatchNor (None, 20, 4) 16 conv1d_23[0][0] __________________________________________________________________________________________________ dense_1 (Dense) (None, 20, 128) 640 batch_normalization[0][0] __________________________________________________________________________________________________ dense_4 (Dense) (None, 20, 128) 640 batch_normalization_1[0][0] __________________________________________________________________________________________________ dense_7 (Dense) (None, 20, 128) 640 batch_normalization_2[0][0] __________________________________________________________________________________________________ dense_10 (Dense) (None, 20, 128) 640 batch_normalization_3[0][0] __________________________________________________________________________________________________ dense_13 (Dense) (None, 20, 128) 640 batch_normalization_4[0][0] __________________________________________________________________________________________________ dense_16 (Dense) (None, 20, 128) 640 batch_normalization_5[0][0] __________________________________________________________________________________________________ gaussian_dropout_1 (GaussianDro (None, 20, 128) 0 dense_1[0][0] __________________________________________________________________________________________________ gaussian_dropout_3 (GaussianDro (None, 20, 128) 0 dense_4[0][0] __________________________________________________________________________________________________ gaussian_dropout_5 (GaussianDro (None, 20, 128) 0 dense_7[0][0] __________________________________________________________________________________________________ gaussian_dropout_7 (GaussianDro (None, 20, 128) 0 dense_10[0][0] __________________________________________________________________________________________________ gaussian_dropout_9 (GaussianDro (None, 20, 128) 0 dense_13[0][0] __________________________________________________________________________________________________ gaussian_dropout_11 (GaussianDr (None, 20, 128) 0 dense_16[0][0] __________________________________________________________________________________________________ flatten (Flatten) (None, 2560) 0 gaussian_dropout_1[0][0] __________________________________________________________________________________________________ flatten_1 (Flatten) (None, 2560) 0 gaussian_dropout_3[0][0] __________________________________________________________________________________________________ flatten_2 (Flatten) (None, 2560) 0 gaussian_dropout_5[0][0] __________________________________________________________________________________________________ flatten_3 (Flatten) (None, 2560) 0 gaussian_dropout_7[0][0] __________________________________________________________________________________________________ flatten_4 (Flatten) (None, 2560) 0 gaussian_dropout_9[0][0] __________________________________________________________________________________________________ flatten_5 (Flatten) (None, 2560) 0 gaussian_dropout_11[0][0] __________________________________________________________________________________________________ dense_2 (Dense) (None, 1) 2561 flatten[0][0] __________________________________________________________________________________________________ dense_5 (Dense) (None, 1) 2561 flatten_1[0][0] __________________________________________________________________________________________________ dense_8 (Dense) (None, 1) 2561 flatten_2[0][0] __________________________________________________________________________________________________ dense_11 (Dense) (None, 1) 2561 flatten_3[0][0] __________________________________________________________________________________________________ dense_14 (Dense) (None, 1) 2561 flatten_4[0][0] __________________________________________________________________________________________________ dense_17 (Dense) (None, 1) 2561 flatten_5[0][0] __________________________________________________________________________________________________ concatenate (Concatenate) (None, 6) 0 dense_2[0][0] dense_5[0][0] dense_8[0][0] dense_11[0][0] dense_14[0][0] dense_17[0][0] ================================================================================================== Total params: 97,542 Trainable params: 97,494 Non-trainable params: 48 __________________________________________________________________________________________________ ***** Training Net ForkedConvLSTM_D64_LSTM2x8_Conv4x20x4_D1x128_dr0.40 now ***** BatchSize: 2108, NumNetParams: 97542, Feature shape: (500000, 22), Output shape: (500000, 6), In/Out Elem.: 14.0000M with est. size: 448.0000 MB Epoch 1/10000 2020-05-08 11:47:57.675309: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_10.dll 2020-05-08 11:47:57.962354: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudnn64_7.dll 2020-05-08 11:47:59.216097: W tensorflow/stream_executor/gpu/redzone_allocator.cc:314] Internal: Invoking GPU asm compilation is supported on Cuda non-Windows platforms only Relying on driver to perform ptx compilation. Modify $PATH to customize ptxas location. This message will be only logged once. 238/238 [==============================] - 21s 90ms/step - loss: 0.3145 - val_loss: 0.0846 - lr: 0.0100 Epoch 2/10000 238/238 [==============================] - 15s 62ms/step - loss: 0.0851 - val_loss: 0.0837 - lr: 0.0100 [...] Epoch 694/10000 238/238 [==============================] - 14s 61ms/step - loss: 0.0833 - val_loss: 0.0836 - lr: 5.0000e-05 Epoch 695/10000 6/238 [..............................] - ETA: 12s - loss: 0.08302020-05-08 14:39:02.141015: E tensorflow/stream_executor/dnn.cc:613] CUDNN_STATUS_INTERNAL_ERROR in tensorflow/stream_executor/cuda/cuda_dnn.cc(1986): 'cudnnRNNBackwardData( cudnn.handle(), rnn_desc.handle(), model_dims.max_seq_length, output_desc.handles(), output_data.opaque(), output_desc.handles(), output_backprop_data.opaque(), output_h_desc.handle(), output_h_backprop_data.opaque(), output_c_desc.handle(), output_c_backprop_data.opaque(), rnn_desc.params_handle(), params.opaque(), input_h_desc.handle(), input_h_data.opaque(), input_c_desc.handle(), input_c_data.opaque(), input_desc.handles(), input_backprop_data->opaque(), input_h_desc.handle(), input_h_backprop_data->opaque(), input_c_desc.handle(), input_c_backprop_data->opaque(), workspace.opaque(), workspace.size(), reserve_space_data->opaque(), reserve_space_data->size())' 2020-05-08 14:39:02.141642: W tensorflow/core/framework/op_kernel.cc:1753] OP_REQUIRES failed at cudnn_rnn_ops.cc:1922 : Internal: Failed to call ThenRnnBackward with model config: [rnn_mode, rnn_input_mode, rnn_direction_mode]: 2, 0, 0 , [num_layers, input_size, num_units, dir_count, max_seq_length, batch_size, cell_num_units]: [1, 16, 8, 1, 22, 2108, 8] 2020-05-08 14:39:02.141037: F tensorflow/stream_executor/cuda/cuda_dnn.cc:189] Check failed: status == CUDNN_STATUS_SUCCESS (7 vs. 0)Failed to set cuDNN stream. 20 Process finished with exit code -1073740791 (0xC0000409)
Here is some code, which should be able to ran and produced the above output:
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # from os import environ # environ['TF_CPP_MIN_LOG_LEVEL'] = '1' from tensorflow.keras.models import * from tensorflow.keras.layers import * from tensorflow.keras.optimizers import * import tensorflow as tf import numpy as np import sys def build_model_simple(inputLength=1, outputLength=1, lr=0.0001, device="/gpu:0", dropoutRate=0.4, nNeuFirstDense=64, numLSTM=2, nNeuLSTM=8, numConv=4, nFiltConv=20, szConvKernel=4, numDenseInner=1, nNeuDenseInner=128): tf.keras.backend.set_floatx('float32') with tf.device(device): input = Input(shape=(inputLength,), dtype=tf.float32) inputExp = tf.expand_dims(input, -1) allInner = [] for _ in range(outputLength): inner = Dense(nNeuFirstDense, activation="linear")(inputExp) inner = GaussianDropout(rate=dropoutRate)(inner) if numLSTM and nNeuLSTM: for _ in range(numLSTM): inner = (Bidirectional(LSTM(nNeuLSTM, return_sequences=True))(inner)) if numConv: for _ in range(numConv): inner = Conv1D(filters=nFiltConv, kernel_size=szConvKernel, strides=1, padding='valid', data_format='channels_first')(inner) inner = BatchNormalization()(inner) if numDenseInner: for _ in range(numDenseInner): inner = Dense(nNeuDenseInner, activation="linear")(inner) inner = GaussianDropout(rate=dropoutRate)(inner) inner = Flatten()(inner) inner = Dense(1, activation="linear")(inner) allInner.append(inner) out = Concatenate()(allInner) # out = outTmp * outTmp * outTmp model = Model(inputs=input, outputs=out) model.compile(loss="mse", optimizer=Adam(lr=lr)) # model.compile(loss="mse", optimizer=Adadelta()) return model, 'ForkedConvLSTM_D{}_LSTM{}x{}_Conv{}x{}x{}_D{}x{}_dr{:.2f}'.format( nNeuFirstDense, numLSTM, nNeuLSTM, numConv, nFiltConv, szConvKernel, numDenseInner, nNeuDenseInner, dropoutRate) def scheduler(epoch, lrStart, lrEnd, lrDecay=0.05, lrNStable=10): lr = lrStart if epoch > lrNStable: fac = tf.math.exp(lrDecay * (lrNStable - epoch)) lr = lrStart * fac + lrEnd * (1 - fac) return lr if __name__ == '__main__': numFeatures = 22 numOutputs = 6 trainIn = np.random.rand(500000, numFeatures) trainOut = np.random.rand(500000, numOutputs) valiIn = np.random.rand(12000, numFeatures) valiOut = np.random.rand(12000, numOutputs) numDataElements = trainIn.shape[0] * (trainIn.shape[1] + trainOut.shape[1]) sizeCalc = numDataElements * sys.getsizeof(trainIn[0][0]) EPOCHS = 10000 LEARNING_RATE_START = 0.01 LEARNING_RATE_END = 0.00005 LEARNING_DECAY = 0.05 print("Starting training sweep with Epochs: {}, LRstart: {}, LRend: {}".format( EPOCHS, LEARNING_RATE_START, LEARNING_RATE_END)) network, nwName = build_model_simple(inputLength=numFeatures, outputLength=numOutputs) netWeights = network.get_weights() numNetPrams = np.sum([np.prod(ele.shape) for ele in netWeights]) # Estimation of Batch Size: GRAM * RAM Factor / NumParams in Net = ~75k. This divided by 30 for to get a # good rough estimate for the batch size BATCH_SIZE = int(np.floor(8 * 1e9 * 0.9 / numNetPrams / 35)) network.summary() print("***** Training Net {} now *****".format(nwName)) print("BatchSize: {}, NumNetParams: {}, Feature shape: {}, Output shape: " "{}, In/Out Elem.: {:.4f}M with est. size: {:.4f} MB".format( BATCH_SIZE, numNetPrams, trainIn.shape, trainOut.shape, numDataElements / 1e6, sizeCalc / 1e6)) callback = tf.keras.callbacks.LearningRateScheduler( lambda x: scheduler(x, LEARNING_RATE_START, LEARNING_RATE_END, LEARNING_DECAY)) fitRes = network.fit(trainIn, trainOut, batch_size=BATCH_SIZE, epochs=EPOCHS, validation_data=(valiIn, valiOut), callbacks=[callback, tf.keras.callbacks.TerminateOnNaN()], verbose=1) logging.info("FINISHED")
Advertisement
Answer
For those who come after me:
I played a lot around with different versions. I even tried to get CUDA 10.2 to work by symlinking the new dlls with the old names. But even this did not fix the bug.
I finally managed to get it to work, by removing all NVidia stuff (including drivers) and installing the newest 10.1 release (from end of ’19) with the studio drivers from this release. So Version 431.86, instead of the latest studio release 441.66.
I don’t think that the previos installations had an error, therefore my estimate is that the driver version was the problem all the time…