Skip to content
Advertisement

Converting a dataframe with a line separator

I make a function that accepts a dataframe as input:

a = {"string": ['xxx', 'yyy'], "array": [[1,2,3,4,5,6,1,2,3,6,6,2,2,3,5,6], [2,6,6]]}
df = pd.DataFrame(a)

    string  array
0   xxx [1, 2, 3, 4, 5, 6, 1, 2, 3, 6, 6, 2, 2, 3, 5, 6]
1   yyy [2, 6, 6]

And returns a dataframe, where a certain delimiter number (in the example, it is 6) is the passed parameter:

    string  array
0   xxx [1, 2, 3, 4, 5, 6]
1   xxx [1, 2, 3, 6]
2   xxx [6]
3   xxx [2, 2, 3, 5, 6]
4   yyy [2, 6]
5   yyy [6]

Here’s what I got:

def df_conversion(df, sep=None):
    data = {}
    idx = []
    
    for i in range(df.shape[0]):       
        key = df['string'].iloc[i]
        value = df['array'].iloc[i]

        spl = [[]]
        for item in value:
            if item == sep:
                spl[-1].append(item)
                idx.append(key)
                spl.append([])
            else:
                spl[-1].append(item)

        del spl[-1]
        if i == 0: spl_0 = spl
        if i == 1: spl_0.extend(spl)

    data['string'] = idx
    data['array'] = spl_0

    return pd.DataFrame(data)

df_conversion(df, 6)

How can I simplify the function and make it more versatile? How do I make the function faster? Thanks.

Advertisement

Answer

You can do this concisely with np.split() and df.explode():

sep = 6
df.array = df.array.apply(lambda a:
    np.split(a, 1 + np.where(np.array(a) == sep)[0][:-1]))

df = df.set_index('string').explode('array').reset_index()

#   string               array
# 0    xxx  [1, 2, 3, 4, 5, 6]
# 1    xxx        [1, 2, 3, 6]
# 2    xxx                 [6]
# 3    xxx     [2, 2, 3, 5, 6]
# 4    yyy              [2, 6]
# 5    yyy                 [6]

Explanation for np.split() and np.where()

We use np.where() to find the indexes of sep:

a = [1, 2, 3, 4, 5, 6, 1, 2, 3, 6, 6, 2, 2, 3, 5, 6]
sep = 6
np.where(np.array(a) == sep)[0]

# array([ 5,  9, 10, 15])

However, np.split() does the splitting after each index, which puts sep at the beginning of each split:

np.split(a, np.where(np.array(a) == sep)[0])

# [array([1, 2, 3, 4, 5]),
#  array([6, 1, 2, 3]),
#  array([6]),
#  array([6, 2, 2, 3, 5]),
#  array([6])]

Instead, OP wants to split before each index to keep sep at the end of each split, so we shift the splitting indexes (1 +) and remove the last splitting index which won’t exist anymore ([:-1]):

np.split(a, 1 + np.where(np.array(a) == sep)[0][:-1])

# [array([1, 2, 3, 4, 5, 6]),
#  array([1, 2, 3, 6]),
#  array([6]),
#  array([2, 2, 3, 5, 6])]
User contributions licensed under: CC BY-SA
5 People found this is helpful
Advertisement