Pandas 1.1.4
MRE:
df = pd.DataFrame({"Code":[1,2], "view_A":[3000, 2300], "click_A":[3, 23], "view_B":[1200, 300], "click_B":[5, 3]}) df.set_index("Code", inplace=True) >>> view_A click_A view_B click_B Code 1 3000 3 1200 5 2 2300 23 300 3
Want to make it into
view click Code type 1 A 3000 3 2 A 2300 23 1 B 1200 5 2 B 300 3
I can do it, but want to explore more (clean) options.
My sol’tn
a_df = df[["view_A", "click_A"]].rename(columns={"view_A":"view", "click_A":"click"}) a_df["type"] = "A" b_df = df[["view_B", "click_B"]].rename(columns={"view_B":"view", "click_B":"click"}) b_df["type"] = "B" final_df = pd.concat([a_df, b_df])
But code is dirty.
Advertisement
Answer
This is essentially a reshape operation using stack
df.columns = df.columns.str.split('_', expand=True) df.stack().rename_axis(['code', 'type'])
click view code type 1 A 3 3000 B 5 1200 2 A 23 2300 B 3 300