Skip to content
Advertisement

collect_list by preserving order based on another variable

I am trying to create a new column of lists in Pyspark using a groupby aggregation on existing set of columns. An example input data frame is provided below:

------------------------
id | date        | value
------------------------
1  |2014-01-03   | 10 
1  |2014-01-04   | 5
1  |2014-01-05   | 15
1  |2014-01-06   | 20
2  |2014-02-10   | 100   
2  |2014-03-11   | 500
2  |2014-04-15   | 1500

The expected output is:

id | value_list
------------------------
1  | [10, 5, 15, 20]
2  | [100, 500, 1500]

The values within a list are sorted by the date.

I tried using collect_list as follows:

from pyspark.sql import functions as F
ordered_df = input_df.orderBy(['id','date'],ascending = True)
grouped_df = ordered_df.groupby("id").agg(F.collect_list("value"))

But collect_list doesn’t guarantee order even if I sort the input data frame by date before aggregation.

Could someone help on how to do aggregation by preserving the order based on a second (date) variable?

Advertisement

Answer

If you collect both dates and values as a list, you can sort the resulting column according to date using and udf, and then keep only the values in the result.

import operator
import pyspark.sql.functions as F

# create list column
grouped_df = input_df.groupby("id") 
               .agg(F.collect_list(F.struct("date", "value")) 
               .alias("list_col"))

# define udf
def sorter(l):
  res = sorted(l, key=operator.itemgetter(0))
  return [item[1] for item in res]

sort_udf = F.udf(sorter)

# test
grouped_df.select("id", sort_udf("list_col") 
  .alias("sorted_list")) 
  .show(truncate = False)
+---+----------------+
|id |sorted_list     |
+---+----------------+
|1  |[10, 5, 15, 20] |
|2  |[100, 500, 1500]|
+---+----------------+
User contributions licensed under: CC BY-SA
3 People found this is helpful
Advertisement