I want to pickle the history object after running a keras fit on tensorflow. But I am getting an error.
import gzip import numpy as np import os import pickle import tensorflow as tf from tensorflow import keras with gzip.open('mnist.pkl.gz', 'rb') as f: train_set, test_set = pickle.load(f, encoding='latin1') X_train = np.asarray(train_set[0]) y_train = np.asarray(train_set[1]) X_test = np.asarray(test_set[0]) y_test = np.asarray(test_set[1]) X_valid, X_train = X_train[:5000]/255.0, X_train[5000:]/255.0 y_valid, y_train = y_train[:5000], y_train[5000:] class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle Boot'] model = keras.models.Sequential() model.add(keras.layers.Flatten(input_shape=[28,28])) model.add(keras.layers.Dense(300, activation = 'relu')) model.add(keras.layers.Dense(100, activation = 'relu')) model.add(keras.layers.Dense(10, activation = 'softmax')) model.summary() model.compile(loss='sparse_categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) history = model.fit(X_train, y_train, epochs=1, validation_data =(X_valid, y_valid)) if not os.path.isdir('models'): os.mkdir('models') model.save('models/basic.h5') with open('models/basic_history.pickle', 'wb') as f: pickle.dump(history, f)
It gives me the following error:
Traceback (most recent call last): File "main.py", line 69, in <module> pickle.dump(history, f) TypeError: can't pickle _thread._local objects
PS: To get the code to run, download the fashion_mnist data: https://s3.amazonaws.com/img-datasets/mnist.pkl.g
Advertisement
Answer
As Karl suggested, the history object cannot be pickled. But it’s dictionary can:
with open('models/basic_history.pickle', 'wb') as f: pickle.dump(history.history, f)