I have the below dataframe:
df = pd.DataFrame({'a': [2.85,3.11,3.3,3.275,np.NaN,4.21], 'b': [3.65,3.825,3.475,np.NaN,4.10,2.73],
                   'c': [4.3,3.08,np.NaN,2.40, 3.33, 2.48]}, index=pd.date_range('2019-01-01', periods=6, 
                    freq='M'))
This gives the dataframe as below:
                a      b     c
2019-01-31  2.850  3.650  4.30
2019-02-28  3.110  3.825  3.08
2019-03-31  3.300  3.475   NaN
2019-04-30  3.275    NaN  2.40
2019-05-31    NaN  4.100  3.33
2019-06-30  4.210  2.730  2.48
Expected:
                a      b     c
2019-01-31  2.850  3.650  4.30
2019-02-28  3.110  3.825  3.08
2019-03-31  3.300  3.475  **3.69**
2019-04-30  3.275  **3.650**  2.40
2019-05-31  **3.220**  4.100  3.33
2019-06-30  4.210  2.730  2.48
I want to replace the NaN values with the 3 month rolling average. How should I got about this?
Advertisement
Answer
If you take NaNs as 0 into your means, can do:
df.fillna(0,inplace=True) df.rolling(3).mean()
This will give you:
a b c 2019-01-31 NaN NaN NaN 2019-02-28 NaN NaN NaN 2019-03-31 3.086667 3.650000 2.460000 2019-04-30 3.228333 2.433333 1.826667 2019-05-31 2.191667 2.525000 1.910000 2019-06-30 2.495000 2.276667 2.736667