JavaScript
x
24
24
1
import cv2
2
import numpy as np
3
import matplotlib.pyplot as plt
4
import tensorflow as tf
5
from keras import Sequential
6
from tensorflow import keras
7
import os
8
9
mnist = tf.keras.datasets.mnist
10
(x_train, y_train), (x_test, y_test) = mnist.load_data()
11
x_train = tf.keras.utils.normalize(x_train, axis=1)
12
x_test = tf.keras.utils.normalize(x_test, axis=1)
13
14
15
model = tf.keras.utils.Sequential()
16
model.add(tf.keras.layers.Flatten(input_shape=(28, 28)))
17
model.add(tf.keras.layers.Dense(128, activation='relu'))
18
model.add(tf.keras.layers.Dense(128, activation='relu'))
19
model.add(tf.keras.layers.Dense(10, activation='softmax'))
20
21
model.compile(optimizer='adam', loss='spare_categorical_crossentropy', metrics=['accuracy'])
22
model.fit(x_train, y_train, epochs=3)
23
model.save('handwritten.model')
24
JavaScript
1
6
1
Traceback (most recent call last):
2
File "C:UsersDELLPycharmProjectsNeuralNetworksmain.py", line 15, in <module>
3
model = tf.keras.utils.Sequential()
4
AttributeError: module 'keras.api._v2.keras.utils' has no attribute 'Sequential'
5
Process finished with exit code 1**
6
Advertisement
Answer
You should be using tf.keras.Sequential()
or tf.keras.models.Sequential()
. Also, you need to define a valid loss function. Here is a working example:
JavaScript
1
24
24
1
import cv2
2
import numpy as np
3
import matplotlib.pyplot as plt
4
import tensorflow as tf
5
from keras import Sequential
6
from tensorflow import keras
7
import os
8
9
mnist = tf.keras.datasets.mnist
10
(x_train, y_train), (x_test, y_test) = mnist.load_data()
11
x_train = tf.keras.utils.normalize(x_train, axis=1)
12
x_test = tf.keras.utils.normalize(x_test, axis=1)
13
14
15
model = tf.keras.Sequential()
16
model.add(tf.keras.layers.Flatten(input_shape=(28, 28)))
17
model.add(tf.keras.layers.Dense(128, activation='relu'))
18
model.add(tf.keras.layers.Dense(128, activation='relu'))
19
model.add(tf.keras.layers.Dense(10, activation='softmax'))
20
21
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
22
model.fit(x_train, y_train, epochs=3)
23
model.save('handwritten.model')
24