I’m looking for a way to add custom date to pd.to_datetime. So, for example:
JavaScript
x
5
1
csv_file = str(datetime.now().strftime('%Y-%m-%d')) + '.csv'
2
csv_file2 = str((datetime.now() + timedelta(days=1)).strftime('%Y-%m-%d')) + '.csv'
3
data = pd.concat(map(pd.read_csv, [csv_file, csv_file2]))
4
data['time'] = pd.to_datetime(data['time'], errors='coerce')
5
Print:
JavaScript
1
5
1
4 2021-08-23 00:00:40
2
20 2021-08-23 00:02:54
3
36 2021-08-23 00:05:09
4
5
pd.to_datetime keeps adding today’s date which is fine in case of csv_file but csv_file2 need to contain tomorrow’s date.
Here’s sample of csv files:
JavaScript
1
6
1
piece,time
2
2259,12:03:50
3
2259,12:07:42
4
2259,12:34:05
5
2259,12:45:29
6
Advertisement
Answer
Idea is create helper column file
for distingush if tomorrow
and last add 1 day
by condition for compare new
column:
JavaScript
1
7
1
data = pd.concat(map(pd.read_csv, [csv_file, csv_file2]), keys=('today','tomorrow'))
2
3
data = data.reset_index(level=1, drop=True).rename_axis('new').reset_index()
4
5
d = pd.to_datetime(data['time'], errors='coerce')
6
data['time'] = np.where(data['new'].eq('tomorrow'), d + pd.Timedelta(1, 'd'), d)
7
Or:
JavaScript
1
6
1
files = [csv_file, csv_file2]
2
names = ('today','tomorrow')
3
data= pd.concat([pd.read_csv(f).assign(new=name) for f, name in zip(files, names)])
4
d = pd.to_datetime(data['time'], errors='coerce')
5
data['time'] = np.where(data['new'].eq('tomorrow'), d + pd.Timedelta(1, 'd'), d)
6