Hi can some one explain why it adds two 0 0 to my data frame in this function
def ToDF(ticker): marketPriceP = [] marketPriceT = [] marketPriceT.append(t()) marketPriceP.append(currentPrice(ticker)) while True: marketPriceT.append(t()) marketPriceP.append(currentPrice(ticker)) if len(marketPriceP) > 5: MKpriceDF = pd.DataFrame(['Price']) MKpriceDF1 = pd.DataFrame(['Time']) MKpriceDF = MKpriceDF.append(marketPriceP, ignore_index= True, verify_integrity= False, sort= None) MKpriceDF1 = MKpriceDF1.append(marketPriceT, ignore_index= True, verify_integrity= False, sort= None) MKpriceDF = pd.concat([MKpriceDF1, MKpriceDF], axis= 1) return MKpriceDF break
the output looks like
0 0 0 Time Price 1 22:24:52 41.04 2 22:24:52 41.04 3 22:24:52 41.04 4 22:24:52 41.04 5 22:24:52 41.04 6 22:24:52 41.04
Advertisement
Answer
You may want to revisit how you are creating the dataframe. Here are some changes for you to consider. I have limited information about what you are doing so my answer is catering to just the code I have seen.
def ToDF(ticker): marketPriceP = [] marketPriceT = [] marketPriceT.append(t()) marketPriceP.append(currentPrice(ticker)) while True: marketPriceT.append(t()) marketPriceP.append(currentPrice(ticker)) if len(marketPriceP) > 5: MKpriceDF = pd.DataFrame({'Price':marketPriceP, 'Time':marketPriceT}) return MKpriceDF # MKpriceDF = pd.DataFrame(['Price']) # MKpriceDF1 = pd.DataFrame(['Time']) # MKpriceDF = MKpriceDF.append(marketPriceP, ignore_index= True, verify_integrity= False, sort= None) # MKpriceDF1 = MKpriceDF1.append(marketPriceT, ignore_index= True, verify_integrity= False, sort= None) # MKpriceDF = pd.concat([MKpriceDF1, MKpriceDF], axis= 1) # return MKpriceDF # break