I have a data frame where one column is categorical strings and the next one is the values corresponding to it:
df = pd.DataFrame(list((['a', 'b', 'c', 'buy', 5],
['f', 'b', 'a', 'buy', 2],
['a', 'b', 'c', 'sold', 6],
['a', 'b', 'f', 'buy', 4],
['a', 'b', 'c', 'returned', 'yes'])), columns = ['attr1', 'attr2','attr3','status','value'])
I want to create new columns based on df.status column, and fill empty ones with np.nan, requires pivot on multiple columns:
I am looking for an efficient solution that works for large data frames.
Advertisement
Answer
You want:
In [255]: df.pivot(index=['attr1', 'attr2', 'attr3'],columns='status', values='value').rename_axis(None, axis=1).reset_index() Out[255]: attr1 attr2 attr3 buy returned sold 0 a b c 5 yes 6 1 a b f 4 NaN NaN 2 f b a 2 NaN NaN

