I created a CIFAR10 dataset learning model using a CNN model. Why is there an error? How should I fix it? I did it in Google colab environment.
import tensorflow as tf
import keras
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense
from keras.datasets import cifar10
LOSS = 'categorical_crossentropy'
OPTIMIZER = 'adam'
def model_build():
model = Sequential()
# 1
model.add(Conv2D(
filters=32,
kernel_size=(5,5),
padding='same',
activation='relu',
input_shape=(32,32,3),
kernel_regularizer='l2',
))
model.add(MaxPooling2D(
pool_size=(2,2),
padding='same'
))
# 2
model.add(Conv2D(
filters=64,
kernel_size=(5,5),
padding='same',
activation='relu',
kernel_regularizer='l2',
))
model.add(MaxPooling2D(
pool_size=(2,2),
padding='same'
))
# 3
model.add(Flatten())
model.add(Dense(
units=512,
activation='relu',
kernel_regularizer='l2',
))
# 4
model.add(Dense(
units=10,
activation='softmax'
))
model.compile(
loss=LOSS,
optimizer=OPTIMIZER,
metrics=['accuracy']
)
return model
def load_dataset():
(X_train, Y_train), (X_test, Y_test) = cifar10.load_data()
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train = X_train / 255.0
X_test = X_test / 255.0
return (X_train, Y_train), (X_test, Y_test)
model = model_build()
(X_train, Y_train), (X_test, Y_test) = load_dataset()
model.fit(
x=X_train, y=Y_train,
epochs=10,
batch_size=32,
verbose=1,
)
model.evaluate(
x=X_test, y=Y_test,
verbose=1,
)
This error occurred to me
ValueError Traceback (most recent call last) in ()
77 epochs=10, 78 batch_size=32, 79 verbose=1, <------Error 80 ) 81
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs)
975 except Exception as e: # pylint:disable=broad-except 976 if hasattr(e, "ag_error_metadata"): 977 raise e.ag_error_metadata.to_exception(e) <---Error 978 else: 979 raise
ValueError: in user code:
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:805 train_function * return step_function(self, iterator)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:795 step_function ** outputs = model.distribute_strategy.run(run_step, args=(data,))
/usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:1259 run return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:2730 call_for_each_replica return self._call_for_each_replica(fn, args, kwargs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:3417 _call_for_each_replica return fn(*args, **kwargs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:788 run_step ** outputs = model.train_step(data)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:756 train_step y, y_pred, sample_weight, regularization_losses=self.losses)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/compile_utils.py:203 __call__ loss_value = loss_obj(y_t, y_p, sample_weight=sw)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/losses.py:152 __call__ losses = call_fn(y_true, y_pred)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/losses.py:256 call ** return ag_fn(y_true, y_pred, **self._fn_kwargs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/util/dispatch.py:201 wrapper return target(*args, **kwargs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/losses.py:1537 categorical_crossentropy return K.categorical_crossentropy(y_true, y_pred, from_logits=from_logits)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/util/dispatch.py:201 wrapper return target(*args, **kwargs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/backend.py:4833 categorical_crossentropy target.shape.assert_is_compatible_with(output.shape)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/tensor_shape.py:1134 assert_is_compatible_with raise ValueError("Shapes %s and %s are incompatible" % (self, other))
ValueError: Shapes (None, 1) and (None, 10) are incompatible
Thank you for your answering.
Advertisement
Answer
I think that your labels are integers not one-hot vectors and its shape is (None, 1).
Try:
LOSS = 'sparse_categorical_crossentropy'