Please help me to make my code more effective. This is my df:
df = pd.DataFrame([['A', 80], ['A', 64], ['A', 55], ['B', 56], ['B', 89], ['B', 73], ['C', 78], ['C', 100], ['C', 150], ['C', 76], ['C', 87]], columns=['Well', 'GR'])
Well GR A 80 A 64 A 55 B 56 B 89 B 73 C 78 C 100 C 150 C 76 C 87
Please help me to find the Vshale. Vshale on each well = GR – GR(min) / GR(max) – GR(min). This is my desired result:
Well GR Vshale A 80 1 A 64 0.36 A 55 0 B 56 0 B 89 1 B 73 0.515151515 C 78 0.027027027 C 100 0.324324324 C 150 1 C 76 0 C 87 0.148648649
This code is work for me, but, I should create a new column that consists of GRMax and GRMin and merge it into my previous df. I am looking for a more effective way without adding GRmin and GRmax on my original df. Thank you.
df1 = df.groupby(['Well']).agg({'GR': ['min', 'max']}).reset_index() df1.columns = list(map(''.join, df1.columns.values)) df2 = pd.merge (df, df1, on = 'Well', how = 'left') df2['Vshale'] = (df2['GR'] - df2['GRmin'])/(df2['GRmax'] - df2['GRmin'])
Advertisement
Answer
one string solution with method transform:
df['Vshale'] = df.groupby('Well').transform(lambda x: (x - np.min(x))/(np.max(x) - np.min(x)))