I am struggling to transform my pyspark dataframe which looks like this:
df = spark.createDataFrame([('0018aad4',[300, 450], ['{"v1": "blue"}', '{"v2": "red"}']), ('0018aad5',[300], ['{"v1": "blue"}'])],[ "id","Tlist", 'Tstring'])
df.show(2, False)
+--------+----------+-------------------------------+
|id |Tlist |Tstring |
+--------+----------+-------------------------------+
|0018aad4|[300, 450]|[{"v1": "blue"}, {"v2": "red"}]|
|0018aad5|[300] |[{"v1": "blue"}] |
+--------+----------+-------------------------------+
to this:
df_result = spark.createDataFrame([('0018aad4',[300, 450], 'blue', 'red'), ('0018aad5',[300], 'blue', None)],[ "id","Tlist", 'v1', 'v2'])
df_result.show(2, False)
+--------+----------+----+----+
|id |Tlist |v1 |v2 |
+--------+----------+----+----+
|0018aad4|[300, 450]|blue|red |
|0018aad5|[300] |blue|null|
+--------+----------+----+----+
I tried to pivot and a bunch of others things but don’t get the result above.
Note that I don’t have the exact number of dict in the column Tstring
Do you know how I can do this?
Advertisement
Answer
Using transform function you can convert each element of the array into a map type. After that, you can use aggregate function to get one map, explode it then pivot the keys to get the desired output:
from pyspark.sql import functions as F
df1 = df.withColumn(
"Tstring",
F.transform("Tstring", lambda x: F.from_json(x, "map<string,string>"))
).withColumn(
"Tstring",
F.aggregate(
F.expr("slice(Tstring, 2, size(Tstring))"),
F.col("Tstring")[0],
lambda acc, x: F.map_concat(acc, x)
)
).select(
"id", "Tlist", F.explode("Tstring")
).groupby(
"id", "Tlist"
).pivot("key").agg(F.first("value"))
df1.show()
#+--------+----------+----+----+
#|id |Tlist |v1 |v2 |
#+--------+----------+----+----+
#|0018aad4|[300, 450]|blue|red |
#|0018aad5|[300] |blue|null|
#+--------+----------+----+----+
I’m using Spark 3.1+, so the higher-order functions such as transform are available in dataframe API but you can do the same using expr for spark <3.1:
df1 = (df.withColumn("Tstring", F.expr("transform(Tstring, x-> from_json(x, 'map<string,string>'))"))
.withColumn("Tstring", F.expr("aggregate(slice(Tstring, 2, size(Tstring)), Tstring[0], (acc, x) -> map_concat(acc, x))"))
.select("id", "Tlist", F.explode("Tstring"))
.groupby("id", "Tlist")
.pivot("key")
.agg(F.first("value"))
)