Below is the code of training Naive Bayes Classifier on movie_reviews dataset for unigram model. I want to train and analyze its performance by considering bigram, trigram model. How can we do it.
import nltk.classify.util
from nltk.classify import NaiveBayesClassifier
from nltk.corpus import movie_reviews
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
def create_word_features(words):
    useful_words = [word for word in words if word not in stopwords.words("english")] 
    my_dict = dict([(word, True) for word in useful_words])
    return my_dict
pos_data = []
for fileid in movie_reviews.fileids('pos'):
    words = movie_reviews.words(fileid)
    pos_data.append((create_word_features(words), "positive"))    
neg_data = []
for fileid in movie_reviews.fileids('neg'):
    words = movie_reviews.words(fileid)
    neg_data.append((create_word_features(words), "negative")) 
train_set = pos_data[:800] + neg_data[:800]
test_set =  pos_data[800:] + neg_data[800:]
classifier = NaiveBayesClassifier.train(train_set)
accuracy = nltk.classify.util.accuracy(classifier, test_set)
Advertisement
Answer
Simply change your featurizer
from nltk import ngrams
def create_ngram_features(words, n=2):
    ngram_vocab = ngrams(words, n)
    my_dict = dict([(ng, True) for ng in ngram_vocab])
    return my_dict
BTW, your code will be a lot faster if you change your featurizer to do use a set for your stopword list and initialize it only once.
stoplist = set(stopwords.words("english"))
def create_word_features(words):
    useful_words = [word for word in words if word not in stoplist] 
    my_dict = dict([(word, True) for word in useful_words])
    return my_dict
Someone should really tell the NLTK people to convert the stopwords list into a set type since it’s “technically” a unique list (i.e. a set).
>>> from nltk.corpus import stopwords
>>> type(stopwords.words('english'))
<class 'list'>
>>> type(set(stopwords.words('english')))
<class 'set'>
For the fun of benchmarking
import nltk.classify.util
from nltk.classify import NaiveBayesClassifier
from nltk.corpus import movie_reviews
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk import ngrams
def create_ngram_features(words, n=2):
    ngram_vocab = ngrams(words, n)
    my_dict = dict([(ng, True) for ng in ngram_vocab])
    return my_dict
for n in [1,2,3,4,5]:
    pos_data = []
    for fileid in movie_reviews.fileids('pos'):
        words = movie_reviews.words(fileid)
        pos_data.append((create_ngram_features(words, n), "positive"))    
    neg_data = []
    for fileid in movie_reviews.fileids('neg'):
        words = movie_reviews.words(fileid)
        neg_data.append((create_ngram_features(words, n), "negative")) 
    train_set = pos_data[:800] + neg_data[:800]
    test_set =  pos_data[800:] + neg_data[800:]
    classifier = NaiveBayesClassifier.train(train_set)
    accuracy = nltk.classify.util.accuracy(classifier, test_set)
    print(str(n)+'-gram accuracy:', accuracy)
[out]:
1-gram accuracy: 0.735 2-gram accuracy: 0.7625 3-gram accuracy: 0.8275 4-gram accuracy: 0.8125 5-gram accuracy: 0.74
Your original code returns an accuracy of 0.725.
Use more orders of ngrams
import nltk.classify.util
from nltk.classify import NaiveBayesClassifier
from nltk.corpus import movie_reviews
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk import everygrams
def create_ngram_features(words, n=2):
    ngram_vocab = everygrams(words, 1, n)
    my_dict = dict([(ng, True) for ng in ngram_vocab])
    return my_dict
for n in range(1,6):
    pos_data = []
    for fileid in movie_reviews.fileids('pos'):
        words = movie_reviews.words(fileid)
        pos_data.append((create_ngram_features(words, n), "positive"))    
    neg_data = []
    for fileid in movie_reviews.fileids('neg'):
        words = movie_reviews.words(fileid)
        neg_data.append((create_ngram_features(words, n), "negative")) 
    train_set = pos_data[:800] + neg_data[:800]
    test_set =  pos_data[800:] + neg_data[800:]
    classifier = NaiveBayesClassifier.train(train_set)
    accuracy = nltk.classify.util.accuracy(classifier, test_set)
    print('1-gram to', str(n)+'-gram accuracy:', accuracy)
[out]:
1-gram to 1-gram accuracy: 0.735 1-gram to 2-gram accuracy: 0.7625 1-gram to 3-gram accuracy: 0.7875 1-gram to 4-gram accuracy: 0.8 1-gram to 5-gram accuracy: 0.82