Skip to content
Advertisement

Plot histogram with colors taken from colormap

I want to plot a simple 1D histogram where the bars should follow the color-coding of a given colormap.

Here’s an MWE:

import numpy as n
import matplotlib.pyplot as plt

# Random gaussian data.
Ntotal = 1000
data = 0.05 * n.random.randn(Ntotal) + 0.5

# This is  the colormap I'd like to use.
cm = plt.cm.get_cmap('RdYlBu_r')

# Plot histogram.
n, bins, patches = plt.hist(data, 25, normed=1, color='green')

plt.show()

which outputs this:

enter image description here

Instead of the color being green for the entire histogram, I’d like the columns to follow a color-coding given by the colormap defined in cm and the values of the bins. This would mean that bins closer to zero (not in height but in position) should look bluer and those closer to one redder, according to the chosen colormap RdYlBu_r.

Since plt.histo doesn’t take a cmap argument I don’t know how to tell it to use the colormap defined in cm.

Advertisement

Answer

The hist command returns a list of patches, so you can iterate over them and set their color like so:

import numpy as n
import matplotlib.pyplot as plt

# Random gaussian data.
Ntotal = 1000
data = 0.05 * n.random.randn(Ntotal) + 0.5

# This is  the colormap I'd like to use.
cm = plt.cm.get_cmap('RdYlBu_r')

# Plot histogram.
n, bins, patches = plt.hist(data, 25, normed=1, color='green')
bin_centers = 0.5 * (bins[:-1] + bins[1:])

# scale values to interval [0,1]
col = bin_centers - min(bin_centers)
col /= max(col)

for c, p in zip(col, patches):
    plt.setp(p, 'facecolor', cm(c))

plt.show()

To get the colors, you need to call the colormap with a value between 0 and 1. Resulting figure:

enter image description here

User contributions licensed under: CC BY-SA
3 People found this is helpful
Advertisement