I’m trying to use Dask instead of pandas since the data size I’m analyzing is quite large. I wanted to add a flag column based on several conditions.
import dask.array as da data['Flag'] = da.where((data['col1']>0) & (data['col2']>data['col4'] | data['col3']>data['col4']), 1, 0).compute()
But, then I got the following error message. The above code works perfectly when using np.where with pandas dataframe, but didn’t work with dask.array.where.
Advertisement
Answer
If numpy works and the operation is row-wise, then one solution is to use .map_partitions:
def create_flag(data):
data['Flag'] = np.where((data['col1']>0) & (data['col2']>data['col4'] | data['col3']>data['col4']), 1, 0)
return data
ddf = ddf.map_partitions(create_flag)
