I’m totally new to Pyspark, as Pyspark doesn’t have loc feature how can we write this logic. I tried by specifying conditions but couldn’t get the desirable result, any help would be greatly appreciated!
df['Total'] = (df['level1']+df['level2']+df['level3']+df['level4'])/df['Number'] df.loc[df['level4'] > 0, 'Total'] += 4 df.loc[((df['level3'] > 0) & (df['Total'] < 1)), 'Total'] += 3 df.loc[((df['level2'] > 0) & (df['Total'] < 1)), 'Total'] += 2 df.loc[((df['level1'] > 0) & (df['Total'] < 1)), 'Total'] += 1
Advertisement
Answer
For a data like the following
data_ls = [ (1, 1, 1, 1, 10), (5, 5, 5, 5, 10) ] data_sdf = spark.sparkContext.parallelize(data_ls). toDF(['level1', 'level2', 'level3', 'level4', 'number']) # +------+------+------+------+------+ # |level1|level2|level3|level4|number| # +------+------+------+------+------+ # | 1| 1| 1| 1| 10| # | 5| 5| 5| 5| 10| # +------+------+------+------+------+
You’re actually updating total
column in each statement, not in an if-then-else way. Your code can be replicated (as is) in pyspark using multiple withColumn()
with when()
like the following.
data_sdf. withColumn('total', (func.col('level1') + func.col('level2') + func.col('level3') + func.col('level4')) / func.col('number')). withColumn('total', func.when(func.col('level4') > 0, func.col('total') + 4).otherwise(func.col('total'))). withColumn('total', func.when((func.col('level3') > 0) & (func.col('total') < 1), func.col('total') + 3).otherwise(func.col('total'))). withColumn('total', func.when((func.col('level2') > 0) & (func.col('total') < 1), func.col('total') + 2).otherwise(func.col('total'))). withColumn('total', func.when((func.col('level1') > 0) & (func.col('total') < 1), func.col('total') + 1).otherwise(func.col('total'))). show() # +------+------+------+------+------+-----+ # |level1|level2|level3|level4|number|total| # +------+------+------+------+------+-----+ # | 1| 1| 1| 1| 10| 4.4| # | 5| 5| 5| 5| 10| 6.0| # +------+------+------+------+------+-----+
We can merge all the withColumn()
with when()
into a single withColumn()
with multiple when()
statements.
data_sdf. withColumn('total', (func.col('level1') + func.col('level2') + func.col('level3') + func.col('level4')) / func.col('number')). withColumn('total', func.when(func.col('level4') > 0, func.col('total') + 4). when((func.col('level3') > 0) & (func.col('total') < 1), func.col('total') + 3). when((func.col('level2') > 0) & (func.col('total') < 1), func.col('total') + 2). when((func.col('level1') > 0) & (func.col('total') < 1), func.col('total') + 1). otherwise(func.col('total')) ). show() # +------+------+------+------+------+-----+ # |level1|level2|level3|level4|number|total| # +------+------+------+------+------+-----+ # | 1| 1| 1| 1| 10| 4.4| # | 5| 5| 5| 5| 10| 6.0| # +------+------+------+------+------+-----+
It’s like numpy.where
and SQL’s case
statements.